Restrained Italian bondage number in graphs

被引:1
作者
Ebrahimi, N. [1 ]
Amjadi, J. [1 ]
Chellali, M. [2 ]
Sheikholeslami, S. M. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
关键词
Restrained Italian domination; restrained Italian bondage; DOMINATION;
D O I
10.1142/S1793830922501191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A restrained Italian dominating function (RIDF) on a graph G = (V, E) is a function f : V -> {0, 1, 2} satisfying: (i) f (N (u)) >= 2 for every vertex u is an element of V (G) with f (u) = 0, where N (u) is the set of vertices adjacent to u; (ii) the subgraph induced by the vertices assigned 0 under f has no isolated vertices. The weight of an RIDF is the sum of its function values over the whole set of vertices, and the restrained Italian domination number gamma(rI) (G) is the minimum weight of an RIDF on G. In this paper, we initiate the study of the restrained Italian bondage number b(rI) (G) of a graph G with no isolated vertices defined as the smallest size of set of edges F subset of E(G) for which gamma(rI) (G - F) > gamma(rI) (G). We begin by showing that the decision problem associated with the restrained Italian bondage problem is NP-hard. Then basic properties of the restrained Italian bondage number are presented. Finally, some sharp bounds for b(rI) (G) are also established.
引用
收藏
页数:16
相关论文
共 22 条
[1]   Total Roman {2}-Dominating Functions in Graphs [J].
Ahangar, H. Abdollahzadeh ;
Chellali, M. ;
Sheikholeslami, S. M. ;
Valenzuela-Tripodoro, J. C. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) :937-958
[2]  
Ahangar HA, 2016, ARS COMBINATORIA, V125, P209
[3]   THE RESTRAINED RAINBOW BONDAGE NUMBER OF A GRAPH [J].
Amjadi, J. ;
Dehgardi, N. ;
Khoeilar, R. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (02) :115-127
[4]  
Amjadi J, 2016, ARS COMBINATORIA, V124, P3
[5]   Bounds on the outer-independent double Italian domination number [J].
Azvin, Farzaneh ;
Rad, Nader Jafari ;
Volkmann, Lutz .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) :123-136
[6]   ON THE ROMAN BONDAGE NUMBER OF A GRAPH [J].
Bahremandpour, A. ;
Hu, Fu-Tao ;
Sheikholeslami, S. M. ;
Xu, Jun-Ming .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (01)
[7]   Roman {2}-domination [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. ;
McRae, Alice A. .
DISCRETE APPLIED MATHEMATICS, 2016, 204 :22-28
[8]   Restrained domination in graphs [J].
Domke, GS ;
Hattingh, JH ;
Hedetniemi, ST ;
Laskar, RC ;
Markus, LR .
DISCRETE MATHEMATICS, 1999, 203 (1-3) :61-69
[9]   THE BONDAGE NUMBER OF A GRAPH [J].
FINK, JF ;
JACOBSON, MS ;
KINCH, LF ;
ROBERTS, J .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :47-57
[10]  
Garey M. R., 1979, Computers and intractability. A guide to the theory of NP-completeness