Asymptotic formula for large eigenvalues of the two-photon quantum Rabi model

被引:1
作者
de Monvel, Anne Boutet [1 ]
Zielinski, Lech [2 ]
机构
[1] Univ Paris Cite, Inst Math Jusieu, 8 Pl Aurelie Nemours, F-75013 Paris, France
[2] Univ Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville UR 2597, F-62228 Calais, France
关键词
JAYNES-CUMMINGS MODEL;
D O I
10.5802/crmath.515
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the spectrum of the two-photon quantum Rabi Hamiltonian consists of two eigenvalue sequences (E-m(+))(infinity)(m=0), (E-m(-))(infinity)(m=0) satisfying a three-term asymptotic formula with the remainder estimate O(m(-1) ln m) when m tends to infinity. By analogy to the one-photon quantum Rabi model, the leading three terms of this asymptotic formula, describe a generalized rotating-wave approximation for large eigenvalues of the two-photon quantum Rabi model.
引用
收藏
页码:1761 / 1766
页数:6
相关论文
共 14 条
[1]  
Aldrovandi E, 2004, Arxiv, DOI arXiv:math/0211055
[2]  
Boutet de Monvel A., 2021, Springer Proc. Math. Stat., V348, P89
[3]  
de Monvel AB, 2006, ASYMPTOTIC ANAL, V47, P291
[4]   Eigenvalue asymptotics of a modified Jaynes-Cummings model with periodic modulations [J].
de Monvel, AB ;
Naboko, S ;
Silva, LO .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (01) :103-107
[5]   Oscillatory Behavior of Large Eigenvalues in Quantum Rabi Models [J].
de Monvel, Anne Boutet ;
Zielinski, Lech .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (07) :5155-5213
[7]   Bogoliubov transformations and exact isolated solutions for simple nonadiabatic Hamiltonians [J].
Emary, C ;
Bishop, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) :3916-3926
[8]  
Feranchuk I, 2015, LECT NOTES PHYS, V894
[9]   Two-level system in a one-mode quantum field: Numerical solution on the basis of the operator method [J].
Feranchuk, ID ;
Komarov, LI ;
Ulyanenkov, AP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14) :4035-4047
[10]   2-PHOTON JAYNES-CUMMINGS MODEL INTERACTING WITH THE SQUEEZED VACUUM [J].
GERRY, CC .
PHYSICAL REVIEW A, 1988, 37 (07) :2683-2686