Identifying Diabetic Retinopathy in the Human Eye: A Hybrid Approach Based on a Computer-Aided Diagnosis System Combined with Deep Learning

被引:5
作者
Atci, Sukran Yaman [1 ]
Gunes, Ali [1 ]
Zontul, Metin [2 ]
Arslan, Zafer [1 ]
机构
[1] Istanbul Aydin Univ, Dept Comp Engn, TR-34295 Istanbul, Turkiye
[2] Sivas Univ Sci & Technol, Dept Comp Engn, TR-58140 Sivas, Turkiye
关键词
diabetic retinopathy; image classification; object detection; computer-aided diagnosis; convolutional neural network (CNN); AUTOMATED DETECTION; IMBALANCED DATA; IMAGE-ANALYSIS; CLASSIFICATION; SEGMENTATION; PREVALENCE; MACHINE;
D O I
10.3390/tomography10020017
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diagnosing and screening for diabetic retinopathy is a well-known issue in the biomedical field. A component of computer-aided diagnosis that has advanced significantly over the past few years as a result of the development and effectiveness of deep learning is the use of medical imagery from a patient's eye to identify the damage caused to blood vessels. Issues with unbalanced datasets, incorrect annotations, a lack of sample images, and improper performance evaluation measures have negatively impacted the performance of deep learning models. Using three benchmark datasets of diabetic retinopathy, we conducted a detailed comparison study comparing various state-of-the-art approaches to address the effect caused by class imbalance, with precision scores of 93%, 89%, 81%, 76%, and 96%, respectively, for normal, mild, moderate, severe, and DR phases. The analyses of the hybrid modeling, including CNN analysis and SHAP model derivation results, are compared at the end of the paper, and ideal hybrid modeling strategies for deep learning classification models for automated DR detection are identified.
引用
收藏
页码:215 / 230
页数:16
相关论文
共 51 条
  • [1] Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning
    Abramoff, Michael David
    Lou, Yiyue
    Erginay, Ali
    Clarida, Warren
    Amelon, Ryan
    Folk, James C.
    Niemeijer, Meindert
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) : 5200 - 5206
  • [2] Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning
    Alyoubi, Wejdan L.
    Abulkhair, Maysoon F.
    Shalash, Wafaa M.
    [J]. SENSORS, 2021, 21 (11)
  • [3] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Alzubaidi, Laith
    Zhang, Jinglan
    Humaidi, Amjad J.
    Al-Dujaili, Ayad
    Duan, Ye
    Al-Shamma, Omran
    Santamaria, J.
    Fadhel, Mohammed A.
    Al-Amidie, Muthana
    Farhan, Laith
    [J]. JOURNAL OF BIG DATA, 2021, 8 (01)
  • [4] Deep learning algorithm predicts diabetic retinopathy progression in individual patients
    Arcadu, Filippo
    Benmansour, Fethallah
    Maunz, Andreas
    Willis, Jeff
    Haskova, Zdenka
    Prunotto, Marco
    [J]. NPJ DIGITAL MEDICINE, 2019, 2 (1)
  • [5] Balaji H., 2017, Int. J. Database Theory Appl., V10, P47, DOI DOI 10.14257/IJDTA.2017.10.9.05
  • [6] Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification
    Bodapati, Jyostna Devi
    Shaik, Nagur Shareef
    Naralasetti, Veeranjaneyulu
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (10) : 9825 - 9839
  • [7] Efficient multi-kernel multi-instance learning using weakly supervised and imbalanced data for diabetic retinopathy diagnosis
    Cao, Peng
    Ren, Fulong
    Wan, Chao
    Yang, Jinzhu
    Zaiane, Osmar
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 69 : 112 - 124
  • [8] Automated detection of diabetic retinopathy using SVM
    Carrera, Enrique V.
    Gonzalez, Andres
    Carrera, Ricardo
    [J]. PROCEEDINGS OF THE 2017 IEEE XXIV INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2017,
  • [9] Chiarelli F., 1999, Curr. Opin. Investig. Drugs, V6, P395
  • [10] Image processing with neural networks - a review
    Egmont-Petersen, M
    de Ridder, D
    Handels, H
    [J]. PATTERN RECOGNITION, 2002, 35 (10) : 2279 - 2301