Symmetric non-Hermitian skin effect with emergent nonlocal correspondence

被引:6
作者
Wang, Zhi-Yuan [1 ,2 ,3 ]
Hong, Jian-Song [1 ,2 ,3 ]
Liu, Xiong-Jun [1 ,2 ,3 ,4 ,5 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[3] Hefei Natl Lab, Hefei 230088, Peoples R China
[4] Int Quantum Acad, Shenzhen 518048, Peoples R China
[5] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
IDEAL WEYL SEMIMETAL;
D O I
10.1103/PhysRevB.108.L060204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The non-Hermitian skin effect (NHSE) refers to the extensive number of eigenstates of a non-Hermitian system that are localized in open boundaries. Here, we predict a universal phenomenon that the local particle-hole(-like) symmetry (PHS) leads to nonlocal pairs of skin modes distributed on different boundaries, manifesting a nonlocalization of the local PHS, which is unique to non-Hermitian systems. We develop a generic theory for the emergent nonlocal symmetry-protected NHSE by connecting the non-Hermitian system to an extended Hermitian Hamiltonian in a quadruplicate Hilbert space, which maps the skin modes to the topological zero modes, and the PHS to an emergent nonlocal symmetry in the perspective of many body physics. The predicted nonlocal NHSE is robust against perturbations. We propose optical Raman lattice models to observe the predicted phenomena in all physical dimensions, which are accessible with cold-atom experiments.
引用
收藏
页数:7
相关论文
共 74 条
[1]   Topological Quantum State Control through Exceptional-Point Proximity [J].
Abbasi, Maryam ;
Chen, Weijian ;
Naghiloo, Mahdi ;
Joglekar, Yogesh N. ;
Murch, Kater W. .
PHYSICAL REVIEW LETTERS, 2022, 128 (16)
[2]   Spin-Orbit-Free Topological Insulators without Time-Reversal Symmetry [J].
Alexandradinata, A. ;
Fang, Chen ;
Gilbert, Matthew J. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW LETTERS, 2014, 113 (11)
[3]  
aps, About us, DOI [10.1103/PhysRevB.108.L060204, DOI 10.1103/PHYSREVB.108.L060204]
[4]   Non-Hermitian physics [J].
Ashida, Yuto ;
Gong, Zongping ;
Ueda, Masahito .
ADVANCES IN PHYSICS, 2020, 69 (03) :249-435
[5]   Bound states in the continuum of higher-order topological insulators [J].
Benalcazar, Wladimir A. ;
Cerjan, Alexander .
PHYSICAL REVIEW B, 2020, 101 (16)
[6]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[7]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[8]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[9]   Exceptional topology of non-Hermitian systems [J].
Bergholtz, Emil J. ;
Budich, Jan Carl ;
Kunst, Flore K. .
REVIEWS OF MODERN PHYSICS, 2021, 93 (01)
[10]   Non-Hermitian Boundary Modes and Topology [J].
Borgnia, Dan S. ;
Kruchkov, Alex Jura ;
Slager, Robert-Jan .
PHYSICAL REVIEW LETTERS, 2020, 124 (05)