Insights into the Effects of Co-Regulated Factors on Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Preparation: Sources, Calcination Temperatures, and Sintering Temperatures

被引:2
作者
Luo, Changwei [1 ,2 ,3 ]
Shuai, Qilin [1 ,2 ]
Zhao, Guoqiang [1 ,2 ,3 ]
Zhang, Mengyang [3 ]
Wu, Bin [3 ]
Fu, Xiaolan [3 ]
Sun, Yujian [3 ]
Wang, Yian [4 ]
Hua, Qingsong [1 ,2 ]
机构
[1] Beijing Normal Univ, Coll Nucl Sci & Technol, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Ctr Ion Beam Technol & Energy Mat, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
[3] Yueqing Solid State Battery Res Inst, Wenzhou 325600, Peoples R China
[4] Jinggangshan Univ, Sch Life Sci, Jian 343009, Jiangxi, Peoples R China
关键词
LATP; process parameters control; ionic conductivity; orthogonal experiment; machine learning; materialsynthesis; LITHIUM ION CONDUCTIVITY; LI-S BATTERIES; MICROSTRUCTURE; PARAMETERS; PROGRESS;
D O I
10.1021/acsami.3c09236
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The ionic conductivity, phase components, and microstructures of LATP depend on its synthesis process. However, their relative importance and their interactions with synthesis process parameters (such as source materials, calcination temperature, and sintering temperature) remain unclear. In this work, different source materials were used to prepare LATP via the solid-state reaction method under different calcination and sintering temperatures, and an analysis via orthogonal experiments and machine learning was used to systematically study the effects of the process parameters. Sintering temperatures had the greatest effect on the total ionic conductivity of LATP pellets, followed by the sources and calcination temperatures. Sources, as the foundational factors, directly determine the composition of a major secondary phase of LATP pellets, which influences the whole process. The calcination temperature had limited impact on the ion conductivity of LATP pellets if pellets were sintered under the optimal temperature. The sintering temperature is the most important factor that influences the ion conductivity by eliminating most secondary phases and altering the microstructure of LATP, including the intergranular contact, grain size, relative densities, etc. This work offers a novel perspective to comprehend the synthesis of solid-state electrolytes beyond LATP.
引用
收藏
页码:48110 / 48121
页数:12
相关论文
共 50 条
  • [11] Ultrafast high-temperature sintering (UHS) of Li1.3Al0.3Ti1.7(PO4)3
    Lin, Yong
    Luo, Nan
    Quattrocchi, Emanuele
    Ciucci, Francesco
    Wu, Jinghua
    Kermani, Milad
    Dong, Jian
    Hu, Chunfeng
    Grasso, Salvatore
    CERAMICS INTERNATIONAL, 2021, 47 (15) : 21982 - 21987
  • [12] Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry
    Duluard, Sandrine
    Paillassa, Aude
    Puech, Laurent
    Vinatier, Philippe
    Turq, Viviane
    Rozier, Patrick
    Lenormand, Pascal
    Taberna, Pierre-Louis
    Simon, Patrice
    Ansart, Florence
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) : 1145 - 1153
  • [13] High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Zhao, Erqing
    Guo, Yudi
    Xu, Guangri
    Yuan, Long
    Liu, Jingcheng
    Li, Xiaobo
    Yang, Li
    Ma, Jingjing
    Li, Yuanchao
    Fan, Shumin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 384 - 391
  • [14] Effect of TeO2 sintering aid on the microstructure and electrical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Zhao, Xiangchao
    Luo, Yuansong
    Zhao, Xiujian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 927
  • [15] Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping
    Kang, Jingrui
    Guo, Xu
    Gu, Rui
    Hao, Honglei
    Tang, Yi
    Wang, Jiahui
    Jin, Li
    Li, Hongfei
    Wei, Xiaoyong
    NANO RESEARCH, 2024, 17 (03) : 1465 - 1472
  • [16] Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping
    Jingrui Kang
    Xu Guo
    Rui Gu
    Honglei Hao
    Yi Tang
    Jiahui Wang
    Li Jin
    Hongfei Li
    Xiaoyong Wei
    Nano Research, 2024, 17 : 1465 - 1472
  • [17] Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity
    Waetzig, Katja
    Rost, Axel
    Heubner, Christian
    Coeler, Matthias
    Nikolowski, Kristian
    Wolter, Mareike
    Schilm, Jochen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 818
  • [18] Effect of boron-based glass additives on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Kang, Jingrui
    Guo, Xu
    Gu, Rui
    Tang, Yi
    Hao, Honglei
    Lan, Yu
    Jin, Li
    Wei, Xiaoyong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 941
  • [19] Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Hallopeau, Leopold
    Bregiroux, Damien
    Rousse, Gwenaelle
    Portehault, David
    Stevens, Philippe
    Toussaint, Gwenaelle
    Laberty-Robert, Christel
    JOURNAL OF POWER SOURCES, 2018, 378 : 48 - 52
  • [20] An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics
    Waetzig, Katja
    Rost, Axel
    Langklotz, Ulrike
    Matthey, Bjoern
    Schilm, Jochen
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2016, 36 (08) : 1995 - 2001