Insights into the Effects of Co-Regulated Factors on Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Preparation: Sources, Calcination Temperatures, and Sintering Temperatures

被引:2
作者
Luo, Changwei [1 ,2 ,3 ]
Shuai, Qilin [1 ,2 ]
Zhao, Guoqiang [1 ,2 ,3 ]
Zhang, Mengyang [3 ]
Wu, Bin [3 ]
Fu, Xiaolan [3 ]
Sun, Yujian [3 ]
Wang, Yian [4 ]
Hua, Qingsong [1 ,2 ]
机构
[1] Beijing Normal Univ, Coll Nucl Sci & Technol, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Ctr Ion Beam Technol & Energy Mat, Key Lab Beam Technol, Minist Educ, Beijing 100875, Peoples R China
[3] Yueqing Solid State Battery Res Inst, Wenzhou 325600, Peoples R China
[4] Jinggangshan Univ, Sch Life Sci, Jian 343009, Jiangxi, Peoples R China
关键词
LATP; process parameters control; ionic conductivity; orthogonal experiment; machine learning; materialsynthesis; LITHIUM ION CONDUCTIVITY; LI-S BATTERIES; MICROSTRUCTURE; PARAMETERS; PROGRESS;
D O I
10.1021/acsami.3c09236
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The ionic conductivity, phase components, and microstructures of LATP depend on its synthesis process. However, their relative importance and their interactions with synthesis process parameters (such as source materials, calcination temperature, and sintering temperature) remain unclear. In this work, different source materials were used to prepare LATP via the solid-state reaction method under different calcination and sintering temperatures, and an analysis via orthogonal experiments and machine learning was used to systematically study the effects of the process parameters. Sintering temperatures had the greatest effect on the total ionic conductivity of LATP pellets, followed by the sources and calcination temperatures. Sources, as the foundational factors, directly determine the composition of a major secondary phase of LATP pellets, which influences the whole process. The calcination temperature had limited impact on the ion conductivity of LATP pellets if pellets were sintered under the optimal temperature. The sintering temperature is the most important factor that influences the ion conductivity by eliminating most secondary phases and altering the microstructure of LATP, including the intergranular contact, grain size, relative densities, etc. This work offers a novel perspective to comprehend the synthesis of solid-state electrolytes beyond LATP.
引用
收藏
页码:48110 / 48121
页数:12
相关论文
共 50 条
  • [1] Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7(PO4)3 Ceramics
    Waetzig, Katja
    Heubner, Christian
    Kusnezoff, Mihails
    CRYSTALS, 2020, 10 (05):
  • [2] Anisotropy of the mechanical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte material
    Yan, Gang
    Yu, Shicheng
    Yang, Weiguang
    Li, Xiaoqiang
    Tempel, Hermann
    Kungl, Hans
    Eichel, Ruediger A.
    Krueger, Manja
    Malzbender, Juergen
    JOURNAL OF POWER SOURCES, 2019, 437
  • [3] Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Mertens, Andreas
    Yu, Shicheng
    Schoen, Nino
    Gunduz, Deniz C.
    Tempel, Hermann
    Schierholz, Roland
    Hausen, Florian
    Kungl, Hans
    Granwehr, Josef
    Eichel, Ruediger-A
    SOLID STATE IONICS, 2017, 309 : 180 - 186
  • [4] Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte
    Rosenberger, Andrew
    Gao, Yu
    Stanciu, Lia
    SOLID STATE IONICS, 2015, 278 : 217 - 221
  • [5] Insights into the reactive sintering and separated specific grain/grain boundary conductivities of Li1.3Al0.3Ti1.7(PO4)3
    Xu, Qi
    Tsai, Chih-Long
    Song, Dongsheng
    Basak, Shibabrata
    Kungl, Hans
    Tempel, Hermann
    Hausen, Florian
    Yu, Shicheng
    Eichel, Ruediger-A.
    JOURNAL OF POWER SOURCES, 2021, 492
  • [6] Preparation and electrochemical properties of a ceramic solid electrolyte with high ionic conductivity, Li1.3Al0.3Ti1.7(PO4)3
    Yin, Jianhong
    Zhang, Haibang
    Zeng, Zhaocheng
    Xu, Guoqian
    Guo, Pingchun
    Jiang, Hedong
    Li, Jiake
    Wang, Yan-xiang
    Yu, Shijin
    Zhu, Hua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 988
  • [7] Facile Route to Synthesize a Highly Sinterable Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte
    Luo, Changwei
    Zhao, Guoqiang
    Zhang, Mengyang
    Wu, Bin
    Hua, Qingsong
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (03) : 3289 - 3301
  • [8] Sol-gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Kunshina, G. B.
    Gromov, O. G.
    Lokshin, E. P.
    Kalinnikov, V. T.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2014, 59 (05) : 424 - 430
  • [9] Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte fabricated from bimodal powder precursor
    Xu, Xieyu
    Kirianova, Alina, V
    Evdokimov, Pavel, V
    Liu, Yangyang
    Jiao, Xingxing
    Volkov, Valentin S.
    Goodilin, Evgeny A.
    Veselova, Irina A.
    Putlayev, Valery I.
    Kapitanova, Olesya O.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (14) : 6170 - 6179
  • [10] Influence of excess lithium and sintering on the conductivity of Li1.3Al0.3Ti1.7(PO4)3
    Li, Ziying
    Zhao, Xiujian
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (04)