Highly computationally efficient parameter estimation algorithms for a class of nonlinear multivariable systems by utilizing the state estimates

被引:2
作者
Cui, Ting [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Input nonlinear model; Parameter estimation; Multivariable system; Over-parameterization; Coupling identification; SUBSPACE IDENTIFICATION; FAULT-DIAGNOSIS; MODEL; OPTIMIZATION; CRITERION; TRACKING; NETWORK; DESIGN;
D O I
10.1007/s11071-023-08259-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the considered system is derived. Second, by cutting down the redundant parameter estimates and extracting the unique parameter estimates from the parameter estimation vector in the least-squares identification method, we present an over-parameterization-based partially coupled average recursive extended least-squares parameter estimation algorithm to estimate the parameters. As for the unknown states in the parameter estimation algorithm, a new state estimator is designed to generate the state estimates. Third, in order to improve the computational efficiency of the parameter estimation algorithm, an over-parameterization-based multi-stage partially coupled average recursive extended least-squares algorithm is proposed. Finally, the computational efficiency analysis and the simulation examples are given to verify the effectiveness of the proposed algorithms.
引用
收藏
页码:8477 / 8496
页数:20
相关论文
共 103 条
  • [61] K4SID: Large-Scale Subspace Identification With Kronecker Modeling
    Sinquin, Baptiste
    Verhaegen, Michel
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (03) : 960 - 975
  • [62] A Nonlinear Safety Equilibrium Spacing-Based Model Predictive Control for Virtually Coupled Train Set Over Gradient Terrains
    Su, Shuai
    She, Jiangfeng
    Li, Kaicheng
    Wang, Xin
    Zhou, Yang
    [J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (02): : 2810 - 2824
  • [63] Design of Running Grades for Energy-Efficient Train Regulation: A Case Study for Beijing Yizhuang Line
    Su, Shuai
    Tang, Tao
    Xun, Jing
    Cao, Fang
    Wang, Yihui
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2021, 13 (02) : 189 - 200
  • [64] An Energy-Efficient Train Operation Approach by Integrating the Metro Timetabling and Eco-Driving
    Su, Shuai
    Wang, Xuekai
    Cao, Yuan
    Yin, Jiateng
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (10) : 4252 - 4268
  • [65] Contactless Fault Diagnosis for Railway Point Machines Based on Multi-Scale Fractional Wavelet Packet Energy Entropy and Synchronous Optimization Strategy
    Sun, Yongkui
    Cao, Yuan
    Li, Peng
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (06) : 5906 - 5914
  • [66] Sound Based Fault Diagnosis for RPMs Based on Multi-Scale Fractional Permutation Entropy and Two-Scale Algorithm
    Sun, Yongkui
    Cao, Yuan
    Xie, Guo
    Wen, Tao
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (11) : 11184 - 11192
  • [67] A Fault Diagnosis Method for Train Plug Doors via Sound Signals
    Sun, Yongkui
    Cao, Yuan
    Ma, Lianchuan
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2021, 13 (03) : 107 - 117
  • [68] A TRUE THREE-SCROLL CHAOTIC ATTRACTOR COINED
    Wang, Haijun
    Fan, Hongdan
    Pan, Jun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05): : 2891 - 2915
  • [69] Lightweight multiple scale-patch dehazing network for real-world hazy image
    Wang, Juan
    Ding, Chang
    Wu, Minghu
    Liu, Yuanyuan
    Chen, Guanhai
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (12): : 4420 - 4438
  • [70] Two-stage gradient-based iterative algorithms for the fractional-order nonlinear systems by using the hierarchical identification principle
    Wang, Junwei
    Ji, Yan
    Zhang, Xiao
    Xu, Ling
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (07) : 1778 - 1796