Highly computationally efficient parameter estimation algorithms for a class of nonlinear multivariable systems by utilizing the state estimates

被引:2
作者
Cui, Ting [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Input nonlinear model; Parameter estimation; Multivariable system; Over-parameterization; Coupling identification; SUBSPACE IDENTIFICATION; FAULT-DIAGNOSIS; MODEL; OPTIMIZATION; CRITERION; TRACKING; NETWORK; DESIGN;
D O I
10.1007/s11071-023-08259-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the considered system is derived. Second, by cutting down the redundant parameter estimates and extracting the unique parameter estimates from the parameter estimation vector in the least-squares identification method, we present an over-parameterization-based partially coupled average recursive extended least-squares parameter estimation algorithm to estimate the parameters. As for the unknown states in the parameter estimation algorithm, a new state estimator is designed to generate the state estimates. Third, in order to improve the computational efficiency of the parameter estimation algorithm, an over-parameterization-based multi-stage partially coupled average recursive extended least-squares algorithm is proposed. Finally, the computational efficiency analysis and the simulation examples are given to verify the effectiveness of the proposed algorithms.
引用
收藏
页码:8477 / 8496
页数:20
相关论文
共 103 条
  • [1] An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems
    Bai, EW
    [J]. AUTOMATICA, 1998, 34 (03) : 333 - 338
  • [2] Cao Y., 2022, ACCIDENT ANAL PREV, V175
  • [3] Trajectory Optimization for High-Speed Trains via a Mixed Integer Linear Programming Approach
    Cao, Yuan
    Zhang, Zixuan
    Cheng, Fanglin
    Su, Shuai
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17666 - 17676
  • [4] Research on Virtual Coupled Train Control Method Based on GPC & VAPF
    Cao Yuan
    Yang Yaran
    Ma Lianchuan
    Wen Jiakun
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2022, 31 (05) : 897 - 905
  • [5] The Fault Diagnosis of a Switch Machine Based on Deep Random Forest Fusion
    Cao, Yuan
    Ji, Yuanshu
    Sun, Yongkui
    Su, Shuai
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2023, 15 (01) : 437 - 452
  • [6] PARAMETER-VARYING ARTIFICIAL POTENTIAL FIELD CONTROL OF VIRTUAL COUPLING SYSTEM WITH NONLINEAR DYNAMICS
    Cao, Yuan
    Wen, Jiakun
    Hobiny, Aatef
    Li, Peng
    Wen, Tao
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (02)
  • [7] A Sound-Based Fault Diagnosis Method for Railway Point Machines Based on Two-Stage Feature Selection Strategy and Ensemble Classifier
    Cao, Yuan
    Sun, Yongkui
    Xie, Guo
    Li, Peng
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 12074 - 12083
  • [8] Tracking and collision avoidance of virtual coupling train control system
    Cao, Yuan
    Wen, Jiakun
    Ma, Lianchuan
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (02) : 2115 - 2125
  • [9] Fault Diagnosis of Train Plug Door Based on a Hybrid Criterion for IMFs Selection and Fractional Wavelet Package Energy Entropy
    Cao, Yuan
    Sun, Yongkui
    Xie, Guo
    Wen, Tao
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) : 7544 - 7551
  • [10] Bio-Inspired Speed Curve Optimization and Sliding Mode Tracking Control for Subway Trains
    Cao, Yuan
    Wang, Zheng-Chao
    Liu, Feng
    Li, Peng
    Xie, Guo
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (07) : 6331 - 6342