Artificial Intelligence in Ophthalmology - Status Quo and Future Perspectives

被引:15
作者
Matos, Philomena A. Wawer [1 ]
Reimer, Robert P. [2 ]
Rokohl, Alexander C. [1 ]
Caldeira, Liliana [2 ]
Heindl, Ludwig M. [1 ]
Hokamp, Nils Grosse [2 ]
机构
[1] Univ Hosp Cologne, Dept Ophthalmol, Kerpener Str 62, D-50937 Cologne, Germany
[2] Univ Hosp Cologne, Dept Diagnost & Intervent Radiol, Cologne, Germany
关键词
Artificial intelligence; Deep learning; Machine learning; Ophthalmology; Radiology; OPTICAL COHERENCE TOMOGRAPHY; DIABETIC-RETINOPATHY; MACULAR DEGENERATION; AUTOMATED DETECTION; DECISION-SUPPORT; FUNDUS IMAGES; VALIDATION; CARE; PREDICTION; DIAGNOSIS;
D O I
10.1080/08820538.2022.2139625
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Artificial intelligence (AI) is an emerging technology in healthcare and holds the potential to disrupt many arms in medical care. In particular, disciplines using medical imaging modalities, including e.g. radiology but ophthalmology as well, are already confronted with a wide variety of AI implications. In ophthalmologic research, AI has demonstrated promising results limited to specific diseases and imaging tools, respectively. Yet, implementation of AI in clinical routine is not widely spread due to availability, heterogeneity in imaging techniques and AI methods. In order to describe the status quo, this narrational review provides a brief introduction to AI ("what the ophthalmologist needs to know"), followed by an overview of different AI-based applications in ophthalmology and a discussion on future challenges.
引用
收藏
页码:226 / 237
页数:12
相关论文
共 111 条
[1]   Keratoconus Severity Classification Using Features Selection and Machine Learning Algorithms [J].
Aatila, Mustapha ;
Lachgar, Mohamed ;
Hamid, Hrimech ;
Kartit, Ali .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
[2]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[3]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[4]   Choroidal Analysis in Healthy Eyes Using Swept-Source Optical Coherence Tomography Compared to Spectral Domain Optical Coherence Tomography [J].
Adhi, Mehreen ;
Liu, Jonathan J. ;
Qavi, Ahmed H. ;
Grulkowski, Ireneusz ;
Lu, Chen D. ;
Mohler, Kathrin J. ;
Ferrara, Daniela ;
Kraus, Martin F. ;
Baumal, Caroline R. ;
Witkin, Andre J. ;
Waheed, Nadia K. ;
Hornegger, Joachim ;
Fujimoto, James G. ;
Duker, Jay S. .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2014, 157 (06) :1272-1281
[5]   Development and validation of an offline deep learning algorithm to detect vitreoretinal abnormalities on ocular ultrasound [J].
Adithya, Venkatesh Krishna ;
Baskaran, Prabu ;
Aruna, S. ;
Mohankumar, Arthi ;
Hubschman, Jean Pierre ;
Shukla, Aakriti Garg ;
Venkatesh, Rengaraj .
INDIAN JOURNAL OF OPHTHALMOLOGY, 2022, 70 (04) :1145-1149
[6]   Detection of microscopic glaucoma through fundus images using deep transfer learning approach [J].
Akbar, Shahzad ;
Hassan, Syed Ale ;
Shoukat, Ayesha ;
Alyami, Jaber ;
Bahaj, Saeed Ali .
MICROSCOPY RESEARCH AND TECHNIQUE, 2022, 85 (06) :2259-2276
[7]   Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma [J].
Angel Zapata, Miguel ;
Royo-Fibla, Didac ;
Font, Octavi ;
Ignacio Vela, Jose ;
Marcantonio, Ivanna ;
Ulises Moya-Sanchez, Eduardo ;
Sanchez-Perez, Abraham ;
Garcia-Gasulla, Dario ;
Cortes, Ulises ;
Ayguade, Eduard ;
Labarta, Jesus .
CLINICAL OPHTHALMOLOGY, 2020, 14 :419-429
[8]   A MINIATURE HAND SLITLAMP [J].
APT, L .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 1965, 59 (02) :322-&
[9]   Artificial Intelligence and Mechanistic Modeling for Clinical Decision Making in Oncology [J].
Benzekry, Sebastien .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2020, 108 (03) :471-486
[10]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715