L-Poly(lactic acid) Production by Microwave Irradiation of Lactic Acid Obtained from Lignocellulosic Wastes

被引:7
作者
Senila, Lacrimioara [1 ]
Cadar, Oana [1 ]
Kovacs, Eniko [1 ,2 ]
Gal, Emese [3 ]
Dan, Monica [4 ]
Stupar, Zamfira [1 ]
Simedru, Dorina [1 ]
Senila, Marin [1 ]
Roman, Cecilia [1 ]
机构
[1] Natl Inst Res & Dev Optoelect Bucharest INOE 2000, Res Inst Analyt Instrumentat Subsidiary, 67 Donath St, Cluj Napoca 400293, Romania
[2] Univ Agr Sci & Vet Med, Fac Hort, 3-5 Manastur St, Cluj Napoca 400372, Romania
[3] Babes Bolyai Univ, Fac Chem & Chem Engn, 11 Arany Janos St, Cluj Napoca 400028, Romania
[4] Natl Inst Res & Dev Isotop & Mol Technol, 67-103 Donath St, Cluj Napoca 400293, Romania
关键词
L-polylactic acid; renewable biomass; simultaneous saccharification and fermentation; lactic acid; POLY(L-LACTIC ACID); POLY(LACTIC ACID); FOOD; SACCHARIFICATION; BIOMASS;
D O I
10.3390/ijms24129817
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
L-polylactic acid (PLA), a semi-crystalline aliphatic polyester, is one of the most manufactured biodegradable plastics worldwide. The objective of the study was to obtain L-polylactic acid (PLA) from lignocellulosic plum biomass. Initially, the biomass was processed via pressurized hot water pretreatment at a temperature of 180 & DEG;C for 30 min at 10 MPa for carbohydrate separation. Cellulase and the beta-glucosidase enzymes were then added, and the mixture was fermented with Lacticaseibacillus rhamnosus ATCC 7469. The resulting lactic acid was concentrated and purified after ammonium sulphate and n-butanol extraction. The productivity of L-lactic acid was 2.04 & PLUSMN; 0.18 g/L/h. Then, the PLA was synthesized in two stages. Firstly, lactic acid was subjected to azeotropic dehydration at 140 & DEG;C for 24 h in the presence of xylene, using SnCl2 (0.4 wt.%) as a catalyst, resulting in lactide (CPLA). Secondly, microwave-assisted polymerization was carried out at 140 & DEG;C for 30 min with 0.4 wt.% SnCl2. The resulting powder was purified with methanol to produce PLA with 92.1% yield. The obtained PLA was confirmed using electrospray ionization mass spectrometry, nuclear magnetic resonance, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. Overall, the resulting PLA can successfully replace the traditional synthetic polymers used in the packaging industry.
引用
收藏
页数:18
相关论文
共 43 条
[1]   Polymerization of lactic acid produced from food waste by metal oxide-assisted dark fermentation [J].
Ahmad, Ashfaq ;
Othman, Israa ;
Rambabu, K. ;
Bharath, G. ;
Taher, Hanifa ;
Hasan, Shadi W. ;
Banat, Fawzi .
ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2021, 24
[2]   Thermal Stability and Decomposition Mechanism of PLA Nanocomposites with Kraft Lignin and Tannin [J].
Ainali, Nina Maria ;
Tarani, Evangelia ;
Zamboulis, Alexandra ;
Cresnar, Klementina Pusnik ;
Zemljic, Lidija Fras ;
Chrissafis, Konstantinos ;
Lambropoulou, Dimitra A. ;
Bikiaris, Dimitrios N. .
POLYMERS, 2021, 13 (16)
[3]   Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept [J].
Ali, Sameh S. ;
Elsamahy, Tamer ;
Abdelkarim, Esraa A. ;
Al-Tohamy, Rania ;
Kornaros, Michael ;
Ruiz, Hector A. ;
Zhao, Tong ;
Li, Fanghua ;
Sun, Jianzhong .
BIORESOURCE TECHNOLOGY, 2022, 363
[4]   Optimization of lactic acid production using immobilized Lactobacillus Rhamnosus and carob pod waste from the Lebanese food industry [J].
Bahry, Hajar ;
Abdalla, Rawa ;
Pons, Agnes ;
Taha, Samir ;
Vial, Christophe .
JOURNAL OF BIOTECHNOLOGY, 2019, 306 :81-88
[5]   Polymerization of Lactic Acid Using Microwave and Conventional Heating [J].
Bakibaev, A. A. ;
Gazaliev, A. M. ;
Kabieva, S. K. ;
Fedorchenko, V. I. ;
Guba, G. Ya. ;
Smetanina, E. I. ;
Dolgov, I. R. ;
Gulyaev, R. O. .
16TH INTERNATIONAL SCIENTIFIC CONFERENCE CHEMISTRY AND CHEMICAL ENGINEERING IN XXI CENTURY DEDICATED TO PROFESSOR L.P. KULYOV (CCE 2015), 2015, 15 :97-102
[6]   Advancement in tensile properties of polylactic acid composites reinforced with rice straw fibers [J].
Beniwal, Preeti ;
Toor, Amrit Pal .
INDUSTRIAL CROPS AND PRODUCTS, 2023, 192
[7]   Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate [J].
Bernardes, A. ;
Pellegrini, V. O. A. ;
Curtolo, F. ;
Camilo, C. M. ;
Mello, B. L. ;
Johns, M. A. ;
Scott, J. L. ;
Guimaraes, F. E. C. ;
Polikarpov, I. .
CARBOHYDRATE POLYMERS, 2019, 211 :57-68
[8]   Continuous simultaneous saccharification and co-fermentation (SSCF) for cellulosic L-lactic acid production [J].
Bin Zhang ;
Li, Jing ;
Liu, Xiucai ;
Bao, Jie .
INDUSTRIAL CROPS AND PRODUCTS, 2022, 187
[9]   Spectrophotometric determination of lactic acid [J].
Borshchevskaya, L. N. ;
Gordeeva, T. L. ;
Kalinina, A. N. ;
Sineokii, S. P. .
JOURNAL OF ANALYTICAL CHEMISTRY, 2016, 71 (08) :755-758
[10]   L-lactic acid production by simultaneous saccharification and fermentation of dilute ethylediamine pre-treated rice straw [J].
Chen, Hao ;
Huo, Weizhong ;
Wang, Boxuan ;
Wang, Yong ;
Wen, Hao ;
Cai, Di ;
Zhang, Changwei ;
Wu, Yilu ;
Qin, Peiyong .
INDUSTRIAL CROPS AND PRODUCTS, 2019, 141