Fast and accurate object detector for autonomous driving based on improved YOLOv5

被引:55
作者
Jia, Xiang [1 ]
Tong, Ying [1 ]
Qiao, Hongming [1 ]
Li, Man [1 ]
Tong, Jiangang [1 ]
Liang, Baoling [1 ]
机构
[1] China Telecom Corp Ltd Beijing Res Inst, Beijing, Peoples R China
关键词
NETWORK;
D O I
10.1038/s41598-023-36868-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Autonomous driving is an important branch of artificial intelligence, and real-time and accurate object detection is key to ensuring the safe and stable operation of autonomous vehicles. To this end, this paper proposes a fast and accurate object detector for autonomous driving based on improved YOLOv5. First, the YOLOv5 algorithm is improved by using structural re-parameterization (Rep), enhancing the accuracy and speed of the model through training-inference decoupling. Additionally, the neural architecture search method is introduced to cut redundant branches in the multi-branch re-parameterization module during the training phase, which ameliorates the training efficiency and accuracy. Finally, a small object detection layer is added to the network and the coordinate attention mechanism is added to all detection layers to improve the recognition rate of the model for small vehicles and pedestrians. The experimental results show that the detection accuracy of the proposed method on the KITTI dataset reaches 96.1%, and the FPS reaches 202, which is superior to many current mainstream algorithms and effectively improves the accuracy and real-time performance of unmanned driving object detection.
引用
收藏
页数:13
相关论文
共 34 条
[1]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[2]   Deep Neural Network Based Vehicle and Pedestrian Detection for Autonomous Driving: A Survey [J].
Chen, Long ;
Lin, Shaobo ;
Lu, Xiankai ;
Cao, Dongpu ;
Wu, Hangbin ;
Guo, Chi ;
Liu, Chun ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) :3234-3246
[3]   Fast vehicle detection algorithm in traffic scene based on improved SSD [J].
Chen, Zhichao ;
Guo, Haoqi ;
Yang, Jie ;
Jiao, Haining ;
Feng, Zhicheng ;
Chen, Lifang ;
Gao, Tao .
MEASUREMENT, 2022, 201
[4]  
Cui Y., 2020, IEEE Transactions on Instrumentation and Measurement, V9456, P1
[5]   Diverse Branch Block: Building a Convolution as an Inception-like Unit [J].
Ding, Xiaohan ;
Zhang, Xiangyu ;
Han, Jungong ;
Ding, Guiguang .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :10881-10890
[6]   RepVGG: Making VGG-style ConvNets Great Again [J].
Ding, Xiaohan ;
Zhang, Xiangyu ;
Ma, Ningning ;
Han, Jungong ;
Ding, Guiguang ;
Sun, Jian .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13728-13737
[7]   A lightweight vehicles detection network model based on YOLOv5 [J].
Dong, Xudong ;
Yan, Shuai ;
Duan, Chaoqun .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
[8]   Lane Lines Detection under Complex Environment by Fusion of Detection and Prediction Models [J].
Haris, Malik ;
Hou, Jin ;
Wang, Xiaomin .
TRANSPORTATION RESEARCH RECORD, 2022, 2676 (03) :342-359
[9]   Coordinate Attention for Efficient Mobile Network Design [J].
Hou, Qibin ;
Zhou, Daquan ;
Feng, Jiashi .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13708-13717
[10]   Adaptive Fusion of Multi-Scale YOLO for Pedestrian Detection [J].
Hsu, Wei-Yen ;
Lin, Wen-Yen .
IEEE ACCESS, 2021, 9 :110063-110073