Continuum robots: Developing dexterity evaluation algorithms using efficient inverse kinematics

被引:13
作者
Du, Fuxin [1 ,2 ,5 ]
Zhang, Gang [1 ,2 ]
Xu, Yanjie [3 ]
Lei, Yanqiang [4 ]
Song, Rui [4 ]
Li, Yibin [4 ]
机构
[1] Shandong Univ, Sch Mech Engn, Jinan, Peoples R China
[2] Shandong Univ, Minist Educ, Key Lab Highefficiency & Clean Mech Manufacture, Shandong 250061, Peoples R China
[3] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[4] Shandong Univ, Sch Control Sci & Engn, Jinan, Peoples R China
[5] Beijing Inst Technol, Beijing Adv Innovat Ctr Intelligent Robots & Syst, Beijing, Peoples R China
关键词
Continuum robots; Inverse kinematics; Dexterity evaluation; Optimization; DESIGN; SYSTEM; SNAKE;
D O I
10.1016/j.measurement.2023.112925
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Performance evaluation and inverse kinematics (IK) for continuum robots are always hard and time-consuming. In this paper, an efficient dexterity evaluation algorithm based on IK (DEAIK) for continuum robots is proposed. The IK model is established using an oval curve equation to improve computational efficiency. The relationship between length distributions and dexterity distribution is obtained by the simulation in this paper. Length dis-tribution of the two-segment continuum robot is optimized under the guidance of the dexterity indices using the fruit fly algorithm. Theoretical analysis and numerical simulations demonstrate that the dexterity of the structure-optimized continuum robot is better than that of the traditional continuum robot. The simulation shows that the DEAIK algorithm is 3.68 times faster than the algorithm based on forward kinematics. The IK algorithm in this paper is 3 203 times faster than the IK algorithm based on the Levenberg-Marquardt algorithm in the same accuracy. This work is significant for designing a high-performance continuum robot.
引用
收藏
页数:17
相关论文
共 31 条
[1]  
Abdel-Malek K. A., 1994, INT DES ENG TECHN C, V12860, P341
[2]   New performance indices and workspace analysis of reconfigurable hyper-redundant robotic arms [J].
Badescu, M ;
Mavroidis, C .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2004, 23 (06) :643-659
[3]   Black locust flowers: antioxidant extraction kinetics, reducing capacity, mineral composition, and antioxidant activity [J].
Boskov, Ivana A. ;
Savic Gajic, Ivana M. ;
Savic, Ivan M. ;
Spalovic, Boban R. ;
Strbac, Nada D. .
CHEMICAL ENGINEERING COMMUNICATIONS, 2022, 209 (09) :1182-1190
[4]  
Campisano F, 2020, IEEE ROBOT AUTOM LET, V5, P6427, DOI [10.1109/LRA.2020.3013900, 10.1109/lra.2020.3013900]
[5]   DSLC-FOA : Improved fruit fly optimization algorithm for application to structural engineering design optimization problems [J].
Du, Ting-Song ;
Ke, Xian-Ting ;
Liao, Jia-Gen ;
Shen, Yan-Jun .
APPLIED MATHEMATICAL MODELLING, 2018, 55 :314-339
[6]   A Continuum Robot and Control Interface for Surgical Assist in Fetoscopic Interventions [J].
Dwyer, George ;
Chadebecq, Francois ;
Amo, Marcel Tella ;
Bergeles, Christos ;
Maneas, Efthymios ;
Pawar, Vijay ;
Poorten, Emanuel Vander ;
Deprest, Jan ;
Ourselin, Sebastien ;
De Coppi, Paolo ;
Vercauteren, Tom ;
Stoyanov, Danail .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (03) :1656-1663
[7]   A GLOBAL PERFORMANCE INDEX FOR THE KINEMATIC OPTIMIZATION OF ROBOTIC MANIPULATORS [J].
GOSSELIN, C ;
ANGELES, J .
JOURNAL OF MECHANICAL DESIGN, 1991, 113 (03) :220-226
[8]   Active-Braid, a Bioinspired Continuum Manipulator [J].
Hassan, Taimoor ;
Cianchetti, Matteo ;
Mazzolai, Barbara ;
Laschi, Cecilia ;
Dario, Paolo .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (04) :2104-2110
[9]   A novel inverse kinematics algorithm using the Kepler oval for continuum robots [J].
Jiajia, Lu ;
Fuxin, Du ;
Yibin, Li ;
Yanqiang, Lei ;
Tao, Zhang ;
Gang, Zhang .
APPLIED MATHEMATICAL MODELLING, 2021, 93 (93) :206-225
[10]   Toward Task Autonomy in Robotic Cardiac Ablation: Learning-Based Kinematic Control of Soft Tendon-Driven Catheters [J].
Jolaei, Mohammad ;
Hooshiar, Amir ;
Dargahi, Javad ;
Packirisamy, Muthukumaran .
SOFT ROBOTICS, 2021, 8 (03) :340-351