Coaxially Conductive Organic Wires Through Self-Assembly

被引:9
|
作者
Louie, Shayan [1 ]
Zhong, Yu [4 ]
Bao, Si Tong [1 ]
Schaack, Cedric [1 ,2 ]
Montoya, Alvaro [1 ]
Jin, Zexin [1 ]
Orchanian, Nicholas M. [1 ]
Liu, Yang [5 ]
Lei, Wenrui [1 ]
Harrison, Kelsey [1 ]
Hone, James [5 ]
Angerhofer, Alexander [2 ]
Evans, Austin M. [2 ,3 ]
Nuckolls, Colin P. [1 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
[3] George & Josephine Butler Polymer Res Lab, Ctr Macromol Sci & Engn, Gainesville, FL 32611 USA
[4] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[5] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
POLYANILINE; NANOTUBES;
D O I
10.1021/jacs.2c12437
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, we describe the synthesis of the hexameric macrocyclic aniline (MA[6]), which spontaneously assembles into coaxially conductive organic wires in its oxidized and acidified emeraldine salt (ES) form. Electrical measurements reveal that ESMA[6] exhibits high electrical conductivity (7.5 x 10-2 S center dot cm-1) and that this conductivity is acid-base responsive. Single-crystal Xray crystallography reveals that ES-MA[6] assembles into well-defined trimeric units that then stack into nanotubes with regular channels, providing a potential route to synthetic nanotubes that are leveraged for ion or small molecule transport. Ultraviolet- visible-near-infrared absorbance spectroscopy and electron paramagnetic spectroscopy showcase the interconversion between acidic (conductive) and basic (insulating) forms of these macrocycles and how charge carriers are formed through protonation, giving rise to the experimentally observed high electrical conductivity.
引用
收藏
页码:4940 / 4945
页数:6
相关论文
共 50 条
  • [31] Efficient self-assembly of porphyrin wires based on imidazole recognition
    Weiss, Jean
    Wytko, Jennifer A.
    Rauch, Vivien
    Kikkawa, Yoshihiro
    Kanesato, Masatoshi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [32] Self-assembly patterning of epitaxial CoSi2 wires
    Kluth, P
    Zhao, QT
    Winnerl, S
    Mantl, S
    MICROELECTRONIC ENGINEERING, 2002, 60 (1-2) : 239 - 245
  • [33] Self-assembly of wires in acrylate monomer via nanoparticle dielectrophoresis
    Slopek, Ryan P.
    Gilchrist, James F.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (04)
  • [34] Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets
    Zhang, Zhenli
    Tang, Zhiyong
    Kotov, Nicholas A.
    Glotzer, Sharon C.
    NANO LETTERS, 2007, 7 (06) : 1670 - 1675
  • [35] Emergence of reconfigurable wires and spinners via dynamic self-assembly
    Kokot, Gasper
    Piet, David
    Whitesides, George M.
    Aranson, Igor S.
    Snezhko, Alexey
    SCIENTIFIC REPORTS, 2015, 5
  • [36] Advances in square arrays through self-assembly and directed self-assembly of block copolymers
    Hardy, Christopher G.
    Tang, Chuanbing
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2013, 51 (01) : 2 - 15
  • [37] Oxide nanostructures through self-assembly
    Aggarwal, S
    Ogale, SB
    Ganpule, CS
    Shinde, SR
    Novikov, VA
    Monga, AP
    Burr, MR
    Ramesh, R
    Ballarotto, V
    Williams, ED
    APPLIED PHYSICS LETTERS, 2001, 78 (10) : 1442 - 1444
  • [38] Self-assembly through stepwise crystallization
    Chen, YY
    Baker, GL
    Ding, YQ
    Rabolt, JF
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (29) : 6962 - 6963
  • [39] Microfabrication through electrostatic self-assembly
    Tien, J
    Terfort, A
    Whitesides, GM
    LANGMUIR, 1997, 13 (20) : 5349 - 5355
  • [40] Multiscale Active Layer Morphologies for Organic Photovoltaics Through Self-Assembly of Nanospheres
    Gehan, Timothy S.
    Bag, Monojit
    Renna, Lawrence A.
    Shen, Xiaobo
    Algaier, Dana D.
    Lahti, Paul M.
    Russell, Thomas P.
    Venkataraman, Dhandapani
    NANO LETTERS, 2014, 14 (09) : 5238 - 5243