Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters

被引:73
作者
Lege, Niubu [1 ,2 ]
He, Xiang-Xi [2 ,4 ]
Wang, Yun-Xiao [3 ]
Lei, Yaojie [3 ]
Yang, Ya-Xuan [1 ]
Xu, Jian-Tong [1 ]
Liu, Min [1 ]
Wu, Xingqiao [2 ]
Lai, Wei-Hong [3 ]
Chou, Shu-Lei [2 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ, Beijing 100124, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Innovat Campus, North Wollongong, NSW 2522, Australia
[4] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
关键词
SOLID-ELECTROLYTE INTERPHASE; INITIAL COULOMBIC EFFICIENCY; NON-GRAPHITIZING CARBONS; LONG-CYCLE STABILITY; HIGH-PERFORMANCE; LI-ION; ELECTROCHEMICAL PERFORMANCE; STORAGE MECHANISM; DENSITY SODIUM; STRUCTURAL EVOLUTION;
D O I
10.1039/d3ee02202a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hard carbon (HC) has the potential to be a viable commercial anode material in both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, current battery performance evaluation methods based on half-cells are insufficient for accurately assessing the performance of HC anodes due to their ultra-low discharge voltage windows. To develop the next-generation of large-scale rechargeable batteries, it is necessary to examine reported HC materials from a full-cell perspective. This review emphasizes the importance of full-cell validation and provides a comprehensive overview of HC anodes - including their history, fundamentals, carbon chemistry induced by temperature, microstructure correlation with electrochemical performance, and debates surrounding lithium/sodium-ion storage mechanisms. Additionally, this review highlights various optimization strategies and suggests potential areas for future application of HC-based lithium-ion batteries (HC-LIBs) and HC-based sodium-ion batteries (HC-SIBs). Furthermore, different challenges and strategies that need to be addressed are presented in the hope of providing inspiration and guidance for the commercialization of HC anodes. Hard carbon shows promise in LIBs and SIBs, but limited understanding and an incomplete assessment system hinder its progress. This review aims to raise awareness among researchers about these challenges.
引用
收藏
页码:5688 / 5720
页数:33
相关论文
共 182 条
[1]   Effect of negative/positive capacity ratio on the rate and cycling performances of LiFePO4/graphite lithium-ion batteries [J].
Abe, Yusuke ;
Kumagai, Seiji .
JOURNAL OF ENERGY STORAGE, 2018, 19 :96-102
[2]   How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? [J].
Abraham, K. M. .
ACS ENERGY LETTERS, 2020, 5 (11) :3544-3547
[3]   Carbon Anodes for Nonaqueous Alkali Metal-Ion Batteries and Their Thermal Safety Aspects [J].
Adams, Ryan A. ;
Varma, Arvind ;
Pol, Vilas G. .
ADVANCED ENERGY MATERIALS, 2019, 9 (35)
[4]   Revealing sodium ion storage mechanism in hard carbon [J].
Alvin, Stevanus ;
Yoon, Dohyeon ;
Chandra, Christian ;
Cahyadi, Handi Setiadi ;
Park, Jae-Ho ;
Chang, Wonyoung ;
Chung, Kyung Yoon ;
Kim, Jaehoon .
CARBON, 2019, 145 :67-81
[5]   A review of Battery Electric Vehicle technology and readiness levels [J].
Andwari, Amin Mahmoudzadeh ;
Pesiridis, Apostolos ;
Rajoo, Srithar ;
Martinez-Botas, Ricardo ;
Esfahanian, Vahid .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 78 :414-430
[6]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[7]   Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries [J].
Bai, Panxing ;
Han, Xinpeng ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Yufei ;
Sun, Jie ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2020, 25 :324-333
[8]   Elucidation of the Sodium-Storage Mechanism in Hard Carbons [J].
Bai, Panxing ;
He, Yongwu ;
Zou, Xiaoxi ;
Zhao, Xinxin ;
Xiong, Peixun ;
Xu, Yunhua .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[9]   Long cycle life and high rate sodium-ion chemistry for hard carbon anodes [J].
Bai, Panxing ;
He, Yongwu ;
Xiong, Peixun ;
Zhao, Xinxin ;
Xu, Kang ;
Xu, Yunhua .
ENERGY STORAGE MATERIALS, 2018, 13 :274-282
[10]   LATTICE-RESOLUTION ELECTRON-MICROSCOPY IN STRUCTURAL STUDIES OF NON-GRAPHITIZING CARBONS FROM POLYVINYLIDENE CHLORIDE (PVDC) [J].
BAN, LL ;
CRAWFORD, D ;
MARSH, H .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1975, 8 (AUG1) :415-420