Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities

被引:33
作者
Xu, Xiaoxue [1 ,2 ]
Sun, Bowen [1 ,2 ]
Zhao, Chuansheng [1 ,2 ]
机构
[1] China Med Univ, Affiliated Hosp 1, Dept Neurol, 155 Nanjing St, Shenyang 110001, Liaoning, Peoples R China
[2] Key Lab Neurol Dis Big Data Liaoning Prov, Shenyang, Peoples R China
基金
中国博士后科学基金;
关键词
PARP-1; parthanatos; inhibitors; neuroinflammation; oxidative stress; cell death; APOPTOSIS-INDUCING FACTOR; AUTISM SPECTRUM DISORDER; POLYMERASE-1-DEPENDENT CELL-DEATH; POLY(ADP-RIBOSE) PAR POLYMER; IN-VITRO MODEL; OXIDATIVE STRESS; PARKINSONS-DISEASE; NEUROPATHIC PAIN; MITOCHONDRIAL DYSFUNCTION; MOLECULAR-MECHANISMS;
D O I
10.1016/j.nbd.2023.106314
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
引用
收藏
页数:22
相关论文
共 293 条
[91]   Brain aging and neurodegeneration: from a mitochondrial point of view [J].
Grimm, Amandine ;
Eckert, Anne .
JOURNAL OF NEUROCHEMISTRY, 2017, 143 (04) :418-431
[92]   Functional genetic variation in 3'UTR of PARP1 indicates a decreased risk and a better severity of ischemic stroke [J].
Gu, Lujun ;
Wang, Qingguang ;
Xu, Gangtao ;
Liu, Dinghua .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2024, 134 (07) :804-809
[93]   Inheritance of Silent rDNA Chromatin Is Mediated by PARP1 via Noncoding RNA [J].
Guetg, Claudio ;
Scheifele, Fabian ;
Rosenthal, Florian ;
Hottiger, Michael O. ;
Santoro, Raffaella .
MOLECULAR CELL, 2012, 45 (06) :790-800
[94]   Cannabidiol exerts protective effects in an in vitro model of Parkinson's disease activating AKT/mTOR pathway [J].
Gugliandolo, Agnese ;
Pollastro, Federica ;
Bramanti, Placido ;
Mazzon, Emanuela .
FITOTERAPIA, 2020, 143
[95]   Parkin Interacts with Apoptosis-Inducing Factor and Interferes with Its Translocation to the Nucleus in Neuronal Cells [J].
Guida, Marianna ;
Zanon, Alessandra ;
Montibeller, Luigi ;
Lavdas, Alexandros A. ;
Ladurner, Judith ;
Pischedda, Francesca ;
Rakovic, Aleksandar ;
Domingues, Francisco S. ;
Piccoli, Giovanni ;
Klein, Christine ;
Pramstaller, Peter P. ;
Hicks, Andrew A. ;
Pichler, Irene .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03)
[96]   Assessing the psychometric properties of persian version of Zarit Burden interview among family caregivers of patients with multiple sclerosis [J].
Haghshenas, Hajar ;
Jokar, Zeinab ;
Zarshenas, Ladan ;
Rakhshan, Mahnaz ;
Poursadeghfard, Maryam .
BMC NURSING, 2023, 22 (01)
[97]   Epilepsy in Early Onset Alzheimer's Disease [J].
Haoudy, Sarah ;
Jonveaux, Therese ;
Puisieux, Salome ;
Epstein, Jonathan ;
Hopes, Lucie ;
Maillard, Louis ;
Aron, Olivier ;
Tyvaert, Louise .
JOURNAL OF ALZHEIMERS DISEASE, 2022, 85 (02) :615-626
[98]   C9orf72 functions in the nucleus to regulate DNA damage repair [J].
He, Liying ;
Liang, Jiaqi ;
Chen, Chaonan ;
Chen, Jijun ;
Shen, Yihui ;
Sun, Shuangshuang ;
Li, Lei .
CELL DEATH AND DIFFERENTIATION, 2023, 30 (03) :716-730
[99]   Defective neurogenesis and schizophrenia-like behavior in PARP-1-deficient mice [J].
Hong, Seokheon ;
Yi, Jee Hyun ;
Lee, Soonje ;
Park, Chang-Hwan ;
Ryu, Jong Hoon ;
Shin, Ki Soon ;
Kang, Shin Jung .
CELL DEATH & DISEASE, 2019, 10 (12)
[100]   Calcitriol Alleviates MPP+ - and MPTP-Induced Parthanatos Through the VDR/PARP1 Pathway in the Model of Parkinson's Disease [J].
Hu, Junjie ;
Wu, Jiawei ;
Wan, Fang ;
Kou, Liang ;
Yin, Sijia ;
Sun, Yadi ;
Li, Yunna ;
Zhou, Qiulu ;
Wang, Tao .
FRONTIERS IN AGING NEUROSCIENCE, 2021, 13