Time-optimal control of driven oscillators by variational circuit learning

被引:2
作者
Huang, Tangyou [1 ,2 ]
Ding, Yongcheng [1 ,2 ]
Dupays, Leonce
Ban, Yue [4 ]
Hong-Yung, Man [5 ,6 ]
del Campo, Adolfo [3 ,7 ]
Chen, Xi [1 ,8 ]
机构
[1] Univ Basque Country UPV EHU, Dept Phys Chem, Apartado 644, Bilbao 48080, Spain
[2] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tech, Shanghai 200444, Peoples R China
[3] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[4] TECNALIA, Basque Res & Technol Alliance BRTA, Derio 48160, Spain
[5] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[6] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[7] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain
[8] Univ Basque Country UPV EHU, EHU Quantum Ctr, Barrio Sarriena S N, Leioa 48940, Spain
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
关键词
QUANTUM SIMULATION; EXPONENTIAL OPERATORS; DECOMPOSITION; DYNAMICS; FIDELITY;
D O I
10.1103/PhysRevResearch.5.023173
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The simulation of quantum dynamics on a digital quantum computer with parametrized circuits has widespread applications in fundamental and applied physics and chemistry. In this context, using the hybrid quantum-classical algorithm, combining classical optimizers and quantum computers, is a competitive strategy for solving specific problems. We put forward its use for optimal quantum control. We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number of qubits. We then use circuit learning based on gradient descent to work out the intrinsic connection between the control phase transition and the quantum speed limit imposed by unitary dynamics. We further discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit. The combination of digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
引用
收藏
页数:12
相关论文
共 83 条
[1]   Measurement-based adaptation protocol with quantum reinforcement learning [J].
Albarran-Arriagada, F. ;
Retamal, J. C. ;
Solano, E. ;
Lamata, L. .
PHYSICAL REVIEW A, 2018, 98 (04)
[2]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[3]   Simulating lattice gauge theories within quantum technologies [J].
Banuls, Mari Carmen ;
Blatt, Rainer ;
Catani, Jacopo ;
Celi, Alessio ;
Cirac, Juan Ignacio ;
Dalmonte, Marcello ;
Fallani, Leonardo ;
Jansen, Karl ;
Lewenstein, Maciej ;
Montangero, Simone ;
Muschik, Christine A. ;
Reznik, Benni ;
Rico, Enrique ;
Tagliacozzo, Luca ;
Van Acoleyen, Karel ;
Verstraete, Frank ;
Wiese, Uwe-Jens ;
Wingate, Matthew ;
Zakrzewski, Jakub ;
Zoller, Peter .
EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (08)
[4]   Hardware-efficient variational quantum algorithms for time evolution [J].
Benedetti, Marcello ;
Fiorentini, Mattia ;
Lubasch, Michael .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[5]   Quantum simulation of the single-particle Schrodinger equation [J].
Benenti, Giuliano ;
Strini, Giuliano .
AMERICAN JOURNAL OF PHYSICS, 2008, 76 (07) :657-662
[6]  
Boggs P. T., 1995, ACTA NUMER, V4, P1, DOI [10.1017/S0962492900002518, DOI 10.1017/S0962492900002518]
[7]   Reinforcement Learning for Digital Quantum Simulation [J].
Bolens, Adrien ;
Heyl, Markus .
PHYSICAL REVIEW LETTERS, 2021, 127 (11)
[8]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[9]   Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator [J].
Bukov, Marin .
PHYSICAL REVIEW B, 2018, 98 (22)
[10]   Reinforcement Learning in Different Phases of Quantum Control [J].
Bukov, Marin ;
Day, Alexandre G. R. ;
Sels, Dries ;
Weinberg, Phillip ;
Polkovnikov, Anatoli ;
Mehta, Pankaj .
PHYSICAL REVIEW X, 2018, 8 (03)