Limitations of using 16S rRNA microbiome sequencing to predict oral squamous cell carcinoma

被引:8
作者
Delaney, Christopher [1 ]
Veena, Chandra Lekha Ramalingam [1 ]
Butcher, Mark C. [1 ]
McLean, William [1 ]
Shaban, Suror Mohamad Ahmad [1 ]
Nile, Christopher J. [2 ]
Ramage, Gordon [1 ,3 ]
机构
[1] Univ Glasgow, Sch Med Dent & Nursing, Coll Med Vet & Life Sci, Glasgow Dent Sch,Oral Sci Res Grp, Glasgow, Scotland
[2] Newcastle Univ, Sch Dent Sci, Fac Med Sci, Newcastle Upon Tyne, England
[3] Univ Glasgow, Sch Med Dent & Nursing, Coll Med Vet & Life Sci, Glasgow Dent Sch,Oral Sci Res Grp, 378 Sauchiehall St, Glasgow G2 3JZ, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
Microbiome; 16S; sequencing; bioinformatics; oral cancer; oral squamous cell carcinoma; CANCER; COMMUNITY;
D O I
10.1111/apm.13315
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
A new era of next-generation sequencing has changed our perception of the oral microbiome in health and disease, and with this there is a growing understanding that the oral microbiome is a contributing factor to oral squamous cell carcinoma (OSCC), a malignancy of the oral cavity. This study aimed to analyse the trends and relevant literature based on the 16S rRNA oral microbiome in head and neck cancer using next-generation sequencing technologies, and to conduct a meta-analysis of the studies with OSCC cases and healthy controls. A literature search using the databases Web of Science and PubMed was conducted in a scoping-like review to collect information based on the study design, and plots were generated using RStudio. We selected case-control studies using 16S rRNA oral microbiome sequencing analysis in OSCC cases versus healthy controls for re-analysis. Statistical analyses were conducted using R. Out of 916 original articles, we filtered and selected 58 studies for review, and 11 studies for meta-analysis. Differences between sampling type, DNA extraction methods, next-generation sequencing technology and region of the 16S rRNA were identified. No significant differences in the alpha- and beta-diversity between health and oral squamous cell carcinoma were observed (p < 0.05). Random Forest classification marginally improved predictability of four studies (training set) when split 80/20. We found an increase in Selenomonas, Leptotrichia and Prevotella species to be indicative of disease. A number of technological advances have been accomplished to study oral microbial dysbiosis in oral squamous cell carcinoma. There is a clear need for standardization of study design and methodology to ensure 16S rRNA outputs are comparable across the discipline in the hope of identifying 'biomarker' organisms for designing screening or diagnostic tools.
引用
收藏
页码:262 / 276
页数:15
相关论文
共 60 条
[1]   Differences in the Bacteriome of Smokeless Tobacco Products with Different Oral Carcinogenicity: Compositional and Predicted Functional Analysis [J].
Al-hebshi, Nezar Noor ;
Alharbi, Fahd Ali ;
Mahri, Mohammed ;
Chen, Tsute .
GENES, 2017, 8 (04)
[2]   Microbiome and oral squamous cell carcinoma: a possible interplay on iron metabolism and its impact on tumor microenvironment [J].
Arthur, Rodrigo Alex ;
Bezerra, Rafael dos Santos ;
Bianchi Ximenez, Joao Paulo ;
Merlin, Bruna Lais ;
Morraye, Raphael de Andrade ;
Neto, Joao Valentini ;
Nasser Fava, Natalia Melo ;
Alves Figueiredo, David Livingstone ;
Oliveira de Biagi Jr, Carlos Alberto ;
Montibeller, Maria Jara ;
Guimaraes, Jhefferson Barbosa ;
Alves, Ellen Gomes ;
Schreiner, Monique ;
da Costa, Tiago Silva ;
Liberati da Silva, Charlie Felipe ;
Malheiros, Jessica Moraes ;
Burda da Silva, Luan Henrique ;
Ribas, Guilherme Taborda ;
Achallma, Daisy Obispo ;
Braga, Camila Margalho ;
Assis Andrade, Karen Flaviane ;
Alves Martins, Valquiria do Carmo ;
Nestor dos Santos, Glauco Vinicius ;
Granatto, Caroline Fabiane ;
Terin, Ulisses Costa ;
Sanches, Igor Henrique ;
Ramos, Diana Estefania ;
Garay-Malpartida, Humberto Miguel ;
Pereira de Souza, Gabriela Marcelino ;
Slavov, Svetoslav Nanev ;
Silva Jr, Wilson Araujo .
BRAZILIAN JOURNAL OF MICROBIOLOGY, 2021, 52 (03) :1287-1302
[3]   Whole-Genome Metagenomic Analysis of the Gut Microbiome in HIV-1-Infected Individuals on Antiretroviral Therapy [J].
Bai, Xiangning ;
Narayanan, Aswathy ;
Nowak, Piotr ;
Ray, Shilpa ;
Neogi, Ujjwal ;
Sonnerborg, Anders .
FRONTIERS IN MICROBIOLOGY, 2021, 12
[4]   Microbiomic subprofiles and MDR1 promoter methylation in head and neck squamous cell carcinoma [J].
Bebek, Gurkan ;
Bennett, Kristi L. ;
Funchain, Pauline ;
Campbell, Rebecca ;
Seth, Rahul ;
Scharpf, Joseph ;
Burkey, Brian ;
Eng, Charis .
HUMAN MOLECULAR GENETICS, 2012, 21 (07) :1557-1565
[5]   The oral metagenome in health and disease [J].
Belda-Ferre, Pedro ;
Alcaraz, Luis David ;
Cabrera-Rubio, Raul ;
Romero, Hector ;
Simon-Soro, Aurea ;
Pignatelli, Miguel ;
Mira, Alex .
ISME JOURNAL, 2012, 6 (01) :46-56
[6]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[7]   Characterization of colibactin-associated mutational signature in an Asian oral squamous cell carcinoma and in other mucosal tumor types [J].
Boot, Arnoud ;
Ng, Alvin W. T. ;
Chong, Fui Teen ;
Ho, Szu-Chi ;
Yu, Willie ;
Tan, Daniel S. W. ;
Iyer, N. Gopalakrishna ;
Rozen, Steven G. .
GENOME RESEARCH, 2020, 30 (06) :803-813
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   The effect of 16S rRNA region choice on bacterial community metabarcoding results [J].
Bukin, Yu. S. ;
Galachyants, Yu. P. ;
Morozov, I. V. ;
Bukin, S. V. ;
Zakharenko, A. S. ;
Zemskaya, T. I. .
SCIENTIFIC DATA, 2019, 6 (1)
[10]   Meta-analysis of caries microbiome studies can improve upon disease prediction outcomes [J].
Butcher, Mark C. ;
Short, Bryn ;
Veena, Chandra Lekha Ramalingam ;
Bradshaw, Dave ;
Pratten, Jonathan R. ;
McLean, William ;
Shaban, Suror Mohamad Ahmad ;
Ramage, Gordon ;
Delaney, Christopher .
APMIS, 2022, 130 (12) :763-777