Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery

被引:9
作者
Wang, Jen-Yeu [1 ]
Qu, Vera [1 ]
Hui, Caressa [1 ]
Sandhu, Navjot [1 ]
Mendoza, Maria G. G. [1 ]
Panjwani, Neil [1 ]
Chang, Yu-Cheng [2 ]
Liang, Chih-Hung [2 ]
Lu, Jen-Tang [2 ]
Wang, Lei [1 ]
Kovalchuk, Nataliya [1 ]
Gensheimer, Michael F. F. [1 ]
Soltys, Scott G. G. [1 ]
Pollom, Erqi L. L. [1 ]
机构
[1] Stanford Univ, Dept Radiat Oncol, Sch Med, 875 Blake Wilbur Dr, Stanford, CA 94305 USA
[2] Vysioneer Inc, Cambridge, MA USA
关键词
SEGMENTATION; VARIABILITY;
D O I
10.1186/s13014-023-02246-z
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose Artificial intelligence-based tools can be leveraged to improve detection and segmentation of brain metastases for stereotactic radiosurgery (SRS). VBrain by Vysioneer Inc. is a deep learning algorithm with recent FDA clearance to assist in brain tumor contouring. We aimed to assess the performance of this tool by various demographic and clinical characteristics among patients with brain metastases treated with SRS. Materials and methods We randomly selected 100 patients with brain metastases who underwent initial SRS on the CyberKnife from 2017 to 2020 at a single institution. Cases with resection cavities were excluded from the analysis. Computed tomography (CT) and axial T1-weighted post-contrast magnetic resonance (MR) image data were extracted for each patient and uploaded to VBrain. A brain metastasis was considered "detected" when the VBrain"predicted" contours overlapped with the corresponding physician contours ("ground-truth" contours). We evaluated performance of VBrain against ground-truth contours using the following metrics: lesion-wise Dice similarity coefficient (DSC), lesion-wise average Hausdorff distance (AVD), false positive count (FP), and lesion-wise sensitivity (%). Kruskal-Wallis tests were performed to assess the relationships between patient characteristics including sex, race, primary histology, age, and size and number of brain metastases, and performance metrics such as DSC, AVD, FP, and sensitivity. Results We analyzed 100 patients with 435 intact brain metastases treated with SRS. Our cohort consisted of patients with a median number of 2 brain metastases (range: 1 to 52), median age of 69 (range: 19 to 91), and 50% male and 50% female patients. The primary site breakdown was 56% lung, 10% melanoma, 9% breast, 8% gynecological, 5% renal, 4% gastrointestinal, 2% sarcoma, and 6% other, while the race breakdown was 60% White, 18% Asian, 3% Black/African American, 2% Native Hawaiian or other Pacific Islander, and 17% other/unknown/not reported. The median tumor size was 0.112 c.c. (range: 0.010-26.475 c.c.). We found mean lesion-wise DSC to be 0.723, mean lesion-wise AVD to be 7.34% of lesion size (0.704 mm), mean FP count to be 0.72 tumors per case, and lesion-wise sensitivity to be 89.30% for all lesions. Moreover, mean sensitivity was found to be 99.07%, 97.59%, and 96.23% for lesions with diameter equal to and greater than 10 mm, 7.5 mm, and 5 mm, respectively. No other significant differences in performance metrics were observed across demographic or clinical characteristic groups. Conclusion In this study, a commercial deep learning algorithm showed promising results in segmenting brain metastases, with 96.23% sensitivity for metastases with diameters of 5 mm or higher. As the software is an assistive AI, future work of VBrain integration into the clinical workflow can provide further clinical and research insights.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Intra- and Interobserver Variability of Linear and Volumetric Measurements of Brain Metastases Using Contrast-Enhanced Magnetic Resonance Imaging [J].
Bauknecht, Hans-Christian ;
Romano, Valentina C. ;
Rogalla, Patrik ;
Klingebiel, Randolf ;
Wolf, Claudia ;
Bornemann, Lars ;
Hamm, Bernd ;
Hein, Patrick A. .
INVESTIGATIVE RADIOLOGY, 2010, 45 (01) :49-56
[2]   Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data [J].
Bousabarah, Khaled ;
Ruge, Maximilian ;
Brand, Julia-Sarita ;
Hoevels, Mauritius ;
Ruess, Daniel ;
Borggrefe, Jan ;
Hokamp, Nils Grosse ;
Visser-Vandewalle, Veerle ;
Maintz, David ;
Treuer, Harald ;
Kocher, Martin .
RADIATION ONCOLOGY, 2020, 15 (01)
[3]   Automatic detection and segmentation of multiple brain metastases on magnetic resonance image using asymmetric UNet architecture [J].
Cao, Yufeng ;
Vassantachart, April ;
Ye, Jason C. ;
Yu, Cheng ;
Ruan, Dan ;
Sheng, Ke ;
Lao, Yi ;
Shen, Zhilei Liu ;
Balik, Salim ;
Bian, Shelly ;
Zada, Gabriel ;
Shiu, Almon ;
Chang, Eric L. ;
Yang, Wensha .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (01)
[4]   Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network [J].
Charron, Odelin ;
Lallement, Alex ;
Jarnet, Delphine ;
Noblet, Vincent ;
Clavier, Jean-Baptiste ;
Meyer, Philippe .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 95 :43-54
[5]   The Stanford stereotactic radiosurgery experience on 7000 patients over 2 decades (1999-2018): looking far beyond the scalpel [J].
Fatima, Nida ;
Meola, Antonio ;
Ding, Victoria Y. ;
Pollom, Erqi ;
Soltys, Scott G. ;
Chuang, Cynthia F. ;
Shahsavari, Nastaran ;
Hancock, Steven L. ;
Gibbs, Iris C. ;
Adler, John R. ;
Chang, Steven D. .
JOURNAL OF NEUROSURGERY, 2021, 135 (06) :1725-1741
[6]   Deep Learning Enables Automatic Detection and Segmentation of Brain Metastases on Multisequence MRI [J].
Grovik, Endre ;
Yi, Darvin ;
Iv, Michael ;
Tong, Elizabeth ;
Rubin, Daniel ;
Zaharchuk, Greg .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (01) :175-182
[7]   Inter-Observer Variability in Target Volume Delineations of Benign and Metastatic Brain Tumours for Stereotactic Radiosurgery: Results of a National Quality Assurance Programme [J].
Growcott, S. ;
Dembrey, T. ;
Patel, R. ;
Eaton, D. ;
Cameron, A. .
CLINICAL ONCOLOGY, 2020, 32 (01) :13-25
[8]   Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases [J].
Kaufmann, Timothy J. ;
Smits, Marion ;
Boxerman, Jerrold ;
Huang, Raymond ;
Barboriak, Daniel P. ;
Weller, Michael ;
Chung, Caroline ;
Tsien, Christina ;
Brown, Paul D. ;
Shankar, Lalitha ;
Galanis, Evanthia ;
Gerstner, Elizabeth ;
van den Bent, Martin J. ;
Burns, Terry C. ;
Pamey, Ian F. ;
Dunn, Gavin ;
Brastianos, Priscilla K. ;
Lin, Nancy U. ;
Wen, Patrick Y. ;
Ellingson, Benjamin M. .
NEURO-ONCOLOGY, 2020, 22 (06) :757-772
[9]   Tumor Primary Site and Histology Subtypes Role in Radiotherapeutic Management of Brain Metastases [J].
Khan, Muhammad ;
Arooj, Sumbal ;
Li, Rong ;
Tian, Yunhong ;
Zhang, Jian ;
Lin, Jie ;
Liang, Yingying ;
Xu, Anan ;
Zheng, Ronghui ;
Liu, Mengzhong ;
Yuan, Yawei .
FRONTIERS IN ONCOLOGY, 2020, 10
[10]  
Kotecha Rupesh, 2018, F1000Res, V7, DOI 10.12688/f1000research.15903.1