Silicon disulfide for high-performance Li-ion batteries and solid-state electrolytes

被引:6
|
作者
Nam, Ki-Hun [1 ,2 ]
Kim, Do-Hyeon [1 ,2 ]
Lee, Young-Han [1 ,2 ]
Han, Su Choel [3 ]
Choi, Jeong-Hee [3 ,4 ]
Ha, Yoon-Cheol [3 ]
Park, Cheol-Min [1 ,2 ]
机构
[1] Kumoh Natl Inst Technol, Sch Mat Sci & Engn, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
[2] Kumoh Natl Inst Technol, Dept Energy Engn Convergence, 61 Daehak Ro, Gumi 39177, Gyeongbuk, South Korea
[3] Korea Electrotechnol Res Inst KERI, Next Generat Battery Res Ctr, 12 Jeongiui Gil, Changwon Si 51543, Gyeongsangnam D, South Korea
[4] Univ Sci & Technol UST, Electro Funct Mat Engn, 217 Gajeong Ro, Daejeon 34113, South Korea
基金
新加坡国家研究基金会;
关键词
LITHIUM-ION; ELECTROCHEMICAL PERFORMANCE; CONFINED SYNTHESIS; ANODE MATERIALS; ENERGY-STORAGE; GRAPHENE; NANOSHEETS; COMPOSITE; GERMANIUM; ZNS;
D O I
10.1039/d2ta08877k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered materials have attracted considerable attention in recent years due to their diverse properties, including tunable bandgaps, valley polarization, and weak van der Waals interlayer forces, which enable a wide variety of promising applications. Among them, silicon disulfide (SiS2) exhibits interesting chemical and physical properties. However, synthesizing SiS2 remains difficult due to the high pressure and temperature requirements and the easy vaporization of the S source. Herein, we establish a simple large-scale synthesis of layered orthorhombic SiS2 using a solid-gas phase reaction. Additionally, it is evaluated for its Li-storage properties as an anode material for Li-ion batteries (LIBs). The SiS2 nanocomposite, which was fabricated using amorphous carbon in a simple mechanical process, has a high lithiation/delithiation capacity of 1610/1363 mA h g(-1), high initial coulombic efficiency of 84.7%, extremely high cycling stability after 800 cycles, and high rate capability. Furthermore, SiS2 is incorporated into a Li-argyrodite solid-state electrolyte (Li6PS5Cl, SSE) used in all-solid-state batteries (ASSBs), resulting in commendable air/moisture stability and high ionic conductivity with low activation energy. Accordingly, the large-scale synthesis method, exceptionally high Li-storage characteristics, and remarkable SSE application of the layered SiS2 make it highly suitable for a variety of applications.
引用
收藏
页码:4987 / 5000
页数:15
相关论文
共 50 条
  • [1] Recent Advancements in High-Performance Solid Electrolytes for Li-ion Batteries: Towards a Solid Future
    Murtaza, Imran
    Ali, Muhammad Umair
    Yu, Hongtao
    Yang, Huai
    Chani, Muhammad Tariq Saeed
    Karimov, Khasan S.
    Meng, Hong
    Huang, Wei
    Asiri, Abdullah M.
    CURRENT NANOSCIENCE, 2020, 16 (04) : 507 - 533
  • [2] Aerosol Jet Printed Polymer Composite Electrolytes for Solid-State Li-Ion Batteries
    Deiner, L. Jay
    Jenkins, Thomas
    Howell, Thomas
    Rottmayer, Michael
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (12)
  • [3] Designing inorganic electrolytes for solid-state Li-ion batteries: A perspectine of LGPS and garnet
    Liang, Feng
    Sun, Yulong
    Yuan, Yifei
    Huang, Jian
    Hou, Minjie
    Lu, Jun
    MATERIALS TODAY, 2021, 50 : 418 - 441
  • [4] Solid-state thin film li-ion batteries
    Song Jie
    Wu Qihui
    Dong Quanfeng
    Zheng Mingsen
    Wu Suntao
    Sun Shigang
    PROGRESS IN CHEMISTRY, 2007, 19 (01) : 66 - 73
  • [5] Alpha-Germanium Nanolayers for High-Performance Li-ion Batteries
    Sierra, Laura
    Gibaja, Carlos
    Torres, Inigo
    Salagre, Elena
    Aviles Moreno, Juan Ramon
    Michel, Enrique G.
    Ocon, Pilar
    Zamora, Felix
    NANOMATERIALS, 2022, 12 (21)
  • [6] Materials advancements in solid-state inorganic electrolytes for highly anticipated all solid Li-ion batteries
    Sarfraz, Nafeesa
    Kanwal, Nosheen
    Ali, Muzahir
    Ali, Kashif
    Hasnain, Ali
    Ashraf, Muhammad
    Ayaz, Muhammad
    Ifthikar, Jerosha
    Ali, Shahid
    Hendi, Abdulmajeed
    Baig, Nadeem
    Ehsan, Muhammad Fahad
    Shah, Syed Shaheen
    Khan, Rizwan
    Khan, Ibrahim
    ENERGY STORAGE MATERIALS, 2024, 71
  • [7] Covalent−organic framework-based electrolytes fabricated for solid-state Li-ion batteries
    Xaimara Santiago-Maldonado
    MRS Bulletin, 2021, 46 : 1006 - 1006
  • [8] Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review
    Ye, Fei
    Liao, Kaiming
    Ran, Ran
    Shao, Zongping
    ENERGY & FUELS, 2020, 34 (08) : 9189 - 9207
  • [9] Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries
    Wang, Shi
    Li, Xiangchun
    Cheng, Tao
    Liu, Yuanyuan
    Li, Qiange
    Bai, Minglei
    Liu, Xu
    Geng, Haigang
    Wen-Yong Lai
    Huang, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (16) : 8761 - 8771
  • [10] Solid-State Li Ion Batteries with Oxide Solid Electrolytes: Progress and Perspective
    Jiang, Pengfeng
    Du, Guangyuan
    Cao, Jiaqi
    Zhang, Xianyong
    Zou, Chuanchao
    Liu, Yitao
    Lu, Xia
    ENERGY TECHNOLOGY, 2023, 11 (03)