High-Performance Carboxymethyl Cellulose Integrating Polydopamine Binder for Silicon Microparticle Anodes in Lithium-Ion Batteries

被引:8
|
作者
Ma, Lei [1 ]
Fu, Xiaomeng [2 ]
Zhao, Fangfang [1 ]
Su, Wenda [1 ]
Yu, Liming [1 ]
Lu, Cheng [1 ]
Wei, Liangming [1 ]
Tang, Gen [2 ]
Wang, Yue [2 ]
Guo, Xiang [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Micro Nano Elect, Key Lab Thin Film & Microfabricat,Minist Educ, Shanghai 200240, Peoples R China
[2] Hubei Inst Aerosp Chemotechnol, Sci & Technol Aerosp Chem Power Lab, Xiangyang 441003, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; silicon microparticle anodes; binder; carboxymethyl cellulose; polydopamine; DESIGN; POLYMER; SURFACE; GUM;
D O I
10.1021/acsaem.2c03606
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon microparticles (SiMPs) have been gradually explored as the anode materials for lithium-ion batteries (LIBs) because they have higher tap density and lower cost than nano-structured Si and thus are more suitable for commercial high-energy battery applications. Developing a binder to alleviate the volume effect of SiMPs and ensure electrode stability during cycling is an effective method. Here, we propose a water-soluble binder by integrating carboxymethyl cellulose (CMC) with polydopamine (PDA) prepared from an alkaline aqueous solution, and the conventional buffer tris, an organic substance, is discarded to avoid problems during electrode preparation. The obtained binder CMC-10% PDA exhibits higher viscosity and better mechanical properties than CMC due to the strong interaction between CMC and PDA through hydrogen bonds and some covalent bonds. The SiMP anodes with the binder (the Si@ CMC-10% PDA electrodes) demonstrate excellent cycling stability (above 1700 mAh g-1 at 0.2 C after 1000 cycles) and rate performance (1269 mAh g-1 at 4 C) and can deliver a high area capacity above 3 mAh cm-2 at a Si load of 1.36 mg cm-2. The full cells composed of the Si@CMC-10% PDA anodes and lithium iron phosphate (LFP) cathodes can maintain an 80% capacity retention after 50 cycles, demonstrating practical application potential.
引用
收藏
页码:1714 / 1722
页数:9
相关论文
共 50 条
  • [41] An Elastic Cross-Linked Binder for Silicon Anodes in Lithium-Ion Batteries with a High Mass Loading
    Zhang, Shiyun
    Liu, Kai
    Xie, Jian
    Xu, Xiongwen
    Tu, Jian
    Chen, Weixiang
    Chen, Fang
    Zhu, Tiejun
    Zhao, Xinbing
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (05) : 6594 - 6602
  • [42] Graphene Caging Silicon Particles for High-Performance Lithium-Ion Batteries
    Nie, Ping
    Le, Zaiyuan
    Chen, Gen
    Liu, Dan
    Liu, Xiaoyan
    Wu, Hao Bin
    Xu, Pengcheng
    Li, Xinru
    Liu, Fang
    Chang, Limin
    Zhang, Xiaogang
    Lu, Yunfeng
    SMALL, 2018, 14 (25)
  • [43] A Design Strategy of Carbon Coatings on Silicon Nanoparticles as Anodes of High-Performance Lithium-Ion Batteries
    Tan, Wen
    Yang, Fan
    Lu, Zhouguang
    Xu, Zhenghe
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (10) : 12143 - 12150
  • [44] Highly Stretchable Conductive Glue for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
    Wang, Lei
    Liu, Tiefeng
    Peng, Xiang
    Zeng, Wenwu
    Jin, Zhenzhen
    Tian, Weifeng
    Gao, Biao
    Zhou, Yinhua
    Chu, Paul K.
    Huo, Kaifu
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (03)
  • [45] Influence of Aqueous Carboxymethyl Cellulose Binder Viscosity on the Anode Performance in Lithium Ion Batteries
    Kang, Hyunchul
    Shin, Eunsun
    Hwang, Keebum
    Kim, Jaekwang
    Yoon, Songhun
    POLYMER-KOREA, 2022, 46 (02) : 281 - 287
  • [46] Modification with graphite and sulfurized amorphous carbon for high-performance silicon anodes in lithium-ion batteries
    Li, Ling
    Qin, Rongrong
    Zhan, Ruoning
    Tu, Chenggang
    Liu, Xuanli
    Liu, Leibin
    Deng, Lingfeng
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [47] Silicon Thin Films as Anodes for High-Performance Lithium-Ion Batteries with Effective Stress Relaxation
    Yu, Cunjiang
    Li, Xin
    Ma, Teng
    Rong, Jiepeng
    Zhang, Rongjun
    Shaffer, Joseph
    An, Yonghao
    Liu, Qiang
    Wei, Bingqing
    Jiang, Hanqing
    ADVANCED ENERGY MATERIALS, 2012, 2 (01) : 68 - 73
  • [48] Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries
    Yan, Yuantao
    Xu, Zhixin
    Liu, Congcong
    Dou, Huanglin
    Wei, Jingjiang
    Zhao, Xiaoli
    Ma, Jingjing
    Dong, Qiang
    Xu, Haisong
    He, Yu-shi
    Ma, Zi-Feng
    Yang, Xiaowei
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (19) : 17375 - 17383
  • [49] Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries
    Xu, Yuxi
    Lin, Zhaoyang
    Zhong, Xing
    Papandrea, Ben
    Huang, Yu
    Duan, Xiangfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (18) : 5345 - 5350
  • [50] Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries
    Chen, Yanli
    Hu, Yi
    Shao, Jianzhong
    Shen, Zhen
    Chen, Renzhong
    Zhang, Xiangwu
    He, Xia
    Song, Yuanze
    Xing, Xiuli
    JOURNAL OF POWER SOURCES, 2015, 298 : 130 - 137