High-Performance Carboxymethyl Cellulose Integrating Polydopamine Binder for Silicon Microparticle Anodes in Lithium-Ion Batteries

被引:8
|
作者
Ma, Lei [1 ]
Fu, Xiaomeng [2 ]
Zhao, Fangfang [1 ]
Su, Wenda [1 ]
Yu, Liming [1 ]
Lu, Cheng [1 ]
Wei, Liangming [1 ]
Tang, Gen [2 ]
Wang, Yue [2 ]
Guo, Xiang [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Micro Nano Elect, Key Lab Thin Film & Microfabricat,Minist Educ, Shanghai 200240, Peoples R China
[2] Hubei Inst Aerosp Chemotechnol, Sci & Technol Aerosp Chem Power Lab, Xiangyang 441003, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; silicon microparticle anodes; binder; carboxymethyl cellulose; polydopamine; DESIGN; POLYMER; SURFACE; GUM;
D O I
10.1021/acsaem.2c03606
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon microparticles (SiMPs) have been gradually explored as the anode materials for lithium-ion batteries (LIBs) because they have higher tap density and lower cost than nano-structured Si and thus are more suitable for commercial high-energy battery applications. Developing a binder to alleviate the volume effect of SiMPs and ensure electrode stability during cycling is an effective method. Here, we propose a water-soluble binder by integrating carboxymethyl cellulose (CMC) with polydopamine (PDA) prepared from an alkaline aqueous solution, and the conventional buffer tris, an organic substance, is discarded to avoid problems during electrode preparation. The obtained binder CMC-10% PDA exhibits higher viscosity and better mechanical properties than CMC due to the strong interaction between CMC and PDA through hydrogen bonds and some covalent bonds. The SiMP anodes with the binder (the Si@ CMC-10% PDA electrodes) demonstrate excellent cycling stability (above 1700 mAh g-1 at 0.2 C after 1000 cycles) and rate performance (1269 mAh g-1 at 4 C) and can deliver a high area capacity above 3 mAh cm-2 at a Si load of 1.36 mg cm-2. The full cells composed of the Si@CMC-10% PDA anodes and lithium iron phosphate (LFP) cathodes can maintain an 80% capacity retention after 50 cycles, demonstrating practical application potential.
引用
收藏
页码:1714 / 1722
页数:9
相关论文
共 50 条
  • [21] High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation
    Yao Gao
    Lei Fan
    Rui Zhou
    Xiaoqiong Du
    Zengbao Jiao
    Biao Zhang
    Nano-Micro Letters, 2023, 15
  • [22] A biopolymer network for lean binder in silicon nanoparticle anodes for lithium-ion batteries
    Li, Zeheng
    Wan, Zhengwei
    Wu, Gu
    Wu, Zhuoying
    Zeng, Xiaomin
    Gan, Lu
    Liu, Jie
    Wu, Shuxing
    Lin, Zhan
    Gao, Xuehui
    Ling, Min
    Liang, Chengdu
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2021, 30
  • [23] Strategies of binder design for high-performance lithium-ion batteries: a mini review
    Wang, Yan-Bo
    Yang, Qi
    Guo, Xun
    Yang, Shuo
    Chen, Ao
    Liang, Guo-Jin
    Zhi, Chun-Yi
    RARE METALS, 2022, 41 (03) : 745 - 761
  • [24] Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries
    Bie, Yitian
    Yang, Jun
    Liu, Xiaolin
    Wang, Jiulin
    Nuli, Yanna
    Lu, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (05) : 2899 - 2904
  • [25] Cross-linking chemistry enables robust conductive polymeric network for high-performance silicon microparticle anodes in lithium-ion batteries
    Zhang, Biao
    Li, Zikai
    Xie, Huamei
    Dong, Yanling
    Xu, Pengfei
    Wang, Dan
    Guo, Anru
    Liu, Dong
    JOURNAL OF POWER SOURCES, 2023, 556
  • [26] Facile In Situ Cross-Linked Robust Three-Dimensional Binder for High-Performance SiOx Anodes in Lithium-Ion Batteries
    Liao, Haojie
    He, Wenjie
    Liu, Nan
    Luo, Derong
    Dou, Hui
    Zhang, Xiaogang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (41) : 49313 - 49321
  • [27] An Energy Dissipative Binder for Self-Tuning Silicon Anodes in Lithium-Ion Batteries
    Tong, Yihong
    Jin, Siyu
    Xu, Hongyuan
    Li, Jiawei
    Kong, Zhao
    Jin, Hong
    Xu, Hui
    ADVANCED SCIENCE, 2023, 10 (02)
  • [28] Influence of Degree of Substitution of Carboxymethyl Cellulose on High Performance Silicon Anode in Lithium-Ion Batteries
    Wang, Xinxin
    Liu, Jian
    Gong, Zhengliang
    Huang, Chaofan
    He, Shuaishuai
    Yu, Lubing
    Gan, Lihui
    Long, Minnan
    ELECTROCHEMISTRY, 2019, 87 (01) : 94 - 99
  • [29] Progress of Binder Structures in Silicon-Based Anodes for Advanced Lithium-Ion Batteries: A Mini Review
    Zhu, Wenqiang
    Zhou, Junjian
    Xiang, Shuang
    Bian, Xueting
    Yin, Jiang
    Jiang, Jianhong
    Yang, Lishan
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [30] In situ cross-linked poly(ether urethane) elastomer as a binder for high-performance Si anodes of lithium-ion batteries
    Kuo, Tsung-Chieh
    Chiou, Chun-Yu
    Li, Chia-Chen
    Lee, Jyh-Tsung
    ELECTROCHIMICA ACTA, 2019, 327