High-Performance Carboxymethyl Cellulose Integrating Polydopamine Binder for Silicon Microparticle Anodes in Lithium-Ion Batteries

被引:8
|
作者
Ma, Lei [1 ]
Fu, Xiaomeng [2 ]
Zhao, Fangfang [1 ]
Su, Wenda [1 ]
Yu, Liming [1 ]
Lu, Cheng [1 ]
Wei, Liangming [1 ]
Tang, Gen [2 ]
Wang, Yue [2 ]
Guo, Xiang [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Micro Nano Elect, Key Lab Thin Film & Microfabricat,Minist Educ, Shanghai 200240, Peoples R China
[2] Hubei Inst Aerosp Chemotechnol, Sci & Technol Aerosp Chem Power Lab, Xiangyang 441003, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; silicon microparticle anodes; binder; carboxymethyl cellulose; polydopamine; DESIGN; POLYMER; SURFACE; GUM;
D O I
10.1021/acsaem.2c03606
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon microparticles (SiMPs) have been gradually explored as the anode materials for lithium-ion batteries (LIBs) because they have higher tap density and lower cost than nano-structured Si and thus are more suitable for commercial high-energy battery applications. Developing a binder to alleviate the volume effect of SiMPs and ensure electrode stability during cycling is an effective method. Here, we propose a water-soluble binder by integrating carboxymethyl cellulose (CMC) with polydopamine (PDA) prepared from an alkaline aqueous solution, and the conventional buffer tris, an organic substance, is discarded to avoid problems during electrode preparation. The obtained binder CMC-10% PDA exhibits higher viscosity and better mechanical properties than CMC due to the strong interaction between CMC and PDA through hydrogen bonds and some covalent bonds. The SiMP anodes with the binder (the Si@ CMC-10% PDA electrodes) demonstrate excellent cycling stability (above 1700 mAh g-1 at 0.2 C after 1000 cycles) and rate performance (1269 mAh g-1 at 4 C) and can deliver a high area capacity above 3 mAh cm-2 at a Si load of 1.36 mg cm-2. The full cells composed of the Si@CMC-10% PDA anodes and lithium iron phosphate (LFP) cathodes can maintain an 80% capacity retention after 50 cycles, demonstrating practical application potential.
引用
收藏
页码:1714 / 1722
页数:9
相关论文
共 50 条
  • [21] High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation
    Yao Gao
    Lei Fan
    Rui Zhou
    Xiaoqiong Du
    Zengbao Jiao
    Biao Zhang
    Nano-Micro Letters, 2023, 15
  • [22] Binder-free silicon anodes wrapped in multiple graphene shells for high-performance lithium-ion batteries
    Kim, So Yeun
    Kim, Chang Hyo
    Yang, Cheol-Min
    JOURNAL OF POWER SOURCES, 2021, 486
  • [23] A carboxymethyl vegetable gum as a robust water soluble binder for silicon anodes in lithium-ion batteries
    Wang, Zechen
    Huang, Tao
    Yu, Aishui
    JOURNAL OF POWER SOURCES, 2021, 489
  • [24] Supramolecular polymers as high-performance binders for silicon anodes in lithium-ion batteries
    Coskun, Ali
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [25] Ambidextrous Polymeric Binder for Silicon Anodes in Lithium-Ion Batteries
    Kim, Junho
    Park, You Kyung
    Kim, Hansu
    Jung, In Hwan
    CHEMISTRY OF MATERIALS, 2022, 34 (13) : 5791 - 5798
  • [26] Influence of Degree of Substitution of Carboxymethyl Cellulose on High Performance Silicon Anode in Lithium-Ion Batteries
    Wang, Xinxin
    Liu, Jian
    Gong, Zhengliang
    Huang, Chaofan
    He, Shuaishuai
    Yu, Lubing
    Gan, Lihui
    Long, Minnan
    ELECTROCHEMISTRY, 2019, 87 (01) : 94 - 99
  • [27] Influence of molecular structure of Carboxymethyl Cellulose on High Performance Silicon Anode in Lithium-Ion Batteries
    Huang, Chaofan
    Yu, Lubing
    He, Shuaishuai
    Gan, Lihui
    Liu, Jian
    Gong, Zhengliang
    Long, Minnan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4799 - 4811
  • [28] Hybrid Ionically Covalently Cross-Linked Network Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries
    Zeng, Xuejian
    Yue, Hongyan
    Wu, Jina
    Chen, Chao
    Liu, Lichun
    BATTERIES-BASEL, 2023, 9 (05):
  • [29] An elastic cross-linked polymeric binder for high-performance silicon/ graphite composite anodes in lithium-ion batteries
    Son, Ho-Jun
    Reddy, B. S.
    Na, Ho-Jun
    Kim, Joo-Hyun
    Ahn, Hyo-Jun
    Ahn, Jou-Hyeon
    Cho, Gyu-Bong
    Cho, Kwon-Koo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [30] Rational design of trifunctional conductive binder for high-performance Si anodes in lithium-ion batteries
    Geng, Wenhui
    Hu, Xinmeng
    Zhou, Qinhua
    Zhang, Yinhang
    He, Bin
    Liu, Zhiliang
    Xiao, Kuikui
    Cai, Dong
    Yang, Shuo
    Nie, Huagui
    Yang, Zhi
    JOURNAL OF POWER SOURCES, 2024, 601