An adaptive optimized Nystrom method for second-order IVPs

被引:5
作者
Rufai, Mufutau Ajani [1 ]
Mazzia, Francesca [2 ]
Ramos, Higinio [3 ,4 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dipartimento Informat, I-70125 Bari, Italy
[3] Univ Salamanca, Sci Comp Grp, Plaza Merced, Salamanca 37008, Spain
[4] Escuela Politecn Super Zamora, Campus Viriato, Zamora 49022, Spain
关键词
collocation method; error estimation and control; ordinary and time-dependent partial differential equations; optimized Nystrom method; variable stepsize formulation; BOUNDARY-VALUE METHODS; MULTISTEP METHODS; IMPLEMENTATION;
D O I
10.1002/mma.8983
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research work deals with the development, analysis, and implementation of an adaptive optimized one-step Nystrom method for solving second-order initial value problems of ODEs and time-dependent partial differential equations. The new method is developed through a collocation technique with a new approach for selecting the collocation points. An embedding-like procedure is used to estimate the error of the proposed optimized method. The current approach has been used to compute efficiently approximate solutions to general second-order IVPs. The numerical experiments demonstrate that the introduced error estimation and step-size control strategy presented in this manuscript have produced a good performance compared to some of the other existing numerical methods.
引用
收藏
页码:7543 / 7556
页数:14
相关论文
共 39 条
[1]   Parallel implementation of block boundary value methods for ODEs [J].
Amodio, P ;
Brugnano, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (02) :197-211
[2]   Asymptotical computations for a model of flow in saturated porous media [J].
Amodio, P. ;
Budd, C. J. ;
Koch, O. ;
Settanni, G. ;
Weinmueller, E. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 237 :155-167
[3]  
Amodio P., 2010, JNAIAM J NUMER ANAL, V5, P3
[4]   Symmetric boundary value methods for second order initial and boundary value problems [J].
Amodio, Pierluigi ;
Iavernaro, Felice .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2006, 3 (3-4) :383-398
[5]  
Atkinson K., 1993, ELEMENTARY NUMERICAL, V2nd
[6]   Trigonometric fitted, eighth-order explicit Numerov-type methods [J].
Berg, Dmitry B. ;
Simos, T. E. ;
Tsitouras, Ch. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) :1845-1854
[7]  
Brugnano L., 1998, SOLVING DIFFERENTIAL, P280
[8]   Second derivative methods with RK stability [J].
Butcher, JC ;
Hojjati, G .
NUMERICAL ALGORITHMS, 2005, 40 (04) :415-429
[9]  
Butcher John, 2008, NUMERICAL METHODS OR, DOI [DOI 10.1002/9781119121534.CH4, 10.1002/9781119121534, DOI 10.1002/9781119121534]
[10]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250