Programming Non-Nucleic Acid Molecules into Computational Nucleic Acid Systems

被引:460
作者
Zhang, Qiu-Long [1 ]
Wang, Yang [1 ]
Wang, Liang-Liang [1 ]
Xie, Fan [1 ]
Wu, Ruo-Yue [1 ]
Ma, Xu-Yang [1 ]
Li, Han [1 ]
Liu, Yan [1 ]
Yao, Shunchun [2 ]
Xu, Liang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, MOE Key Lab Bioinorgan & Synthet Chem, Guangzhou 510275, Peoples R China
[2] South China Univ Technol, Sch Elect Power Engn, Guangzhou 510641, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Dynamic DNA Nanotechnology; Information Technology; Ligand Integration; Molecular Computation; Nucleic Acid Circuits; STRAND-DISPLACEMENT; DNA APTAMER; NANOTECHNOLOGY; NETWORKS; CIRCUIT; BINDING; DESIGN;
D O I
10.1002/anie.202214698
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nucleic acid (NA) computation has been widely developed in the past years to solve kinds of logic and mathematic issues in both information technologies and biomedical analysis. However, the difficulty to integrate non-NA molecules limits its power as a universal platform for molecular computation. Here, we report a versatile prototype of hybridized computation integrated with both nucleic acids and non-NA molecules. Employing the conformationally controlled ligand converters, we demonstrate that non-NA molecules, including both small molecules and proteins, can be computed as nucleic acid strands to construct the circuitry with increased complexity and scalability, and can be even programmed to solve arithmetical calculations within the computational nucleic acid system. This study opens a new door for molecular computation in which all-NA circuits can be expanded with integration of various ligands, and meanwhile, ligands can be precisely programmed by the nuclei acid computation.
引用
收藏
页数:10
相关论文
共 55 条
[1]   MOLECULAR COMPUTATION OF SOLUTIONS TO COMBINATORIAL PROBLEMS [J].
ADLEMAN, LM .
SCIENCE, 1994, 266 (5187) :1021-1024
[2]   Modular protein-oligonucleotide signal exchange [J].
Agrawal, Deepak K. ;
Schulman, Rebecca .
NUCLEIC ACIDS RESEARCH, 2020, 48 (12) :6431-6444
[3]   Rational Design of pH-Controlled DNA Strand Displacement [J].
Amodio, Alessia ;
Zhao, Bin ;
Porchetta, Alessandro ;
Idili, Andrea ;
Castronovo, Matteo ;
Fan, Chunhai ;
Ricci, Francesco .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (47) :16469-16472
[4]  
[Anonymous], 2011, ANGEW CHEM, V123, P3180
[5]   Multianalytical Study of the Binding between a Small Chiral Molecule and a DNA Aptamer: Evidence for Asymmetric Steric Effect upon 3′-versus 5′-End Sequence Modification [J].
Challier, Lylian ;
Miranda-Castro, Rebeca ;
Barbe, Bertrand ;
Fave, Claire ;
Limoges, Benoit ;
Peyrin, Eric ;
Ravelet, Corinne ;
Fiore, Emmanuelle ;
Labbe, Pierre ;
Coche-Guerente, Liliane ;
Ennifar, Eric ;
Bec, Guillaume ;
Dumas, Philippe ;
Mavre, Francois ;
Noel, Vincent .
ANALYTICAL CHEMISTRY, 2016, 88 (23) :11963-11971
[6]   Nucleic acid-based molecular computation heads towards cellular applications [J].
Chen, Lanlan ;
Chen, Wanzhen ;
Liu, Guo ;
Li, Jingying ;
Lu, Chunhua ;
Li, Juan ;
Tan, Weihong ;
Yang, Huanghao .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (22) :12551-12575
[7]  
Chen YJ, 2015, NAT NANOTECHNOL, V10, P748, DOI [10.1038/NNANO.2015.195, 10.1038/nnano.2015.195]
[8]   Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks [J].
Cherry, Kevin M. ;
Qian, Lulu .
NATURE, 2018, 559 (7714) :370-+
[9]  
Del Grosso, 2018, ANGEW CHEM, V130, P10649, DOI [10.1002/ange.201801318, DOI 10.1002/ANGE.201801318]
[10]   Dissipative Synthetic DNA-Based Receptors for the Transient Loading and Release of Molecular Cargo [J].
Del Grosso, Erica ;
Amodio, Alessia ;
Ragazzon, Giulio ;
Prins, Leonard J. ;
Ricci, Francesco .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (33) :10489-10493