CONVOLUTIONAL CODES OVER FINITE CHAIN RINGS, MDP CODES AND THEIR CHARACTERIZATION

被引:3
作者
Alfarano, Gianira N. [1 ]
Gruica, Anina [2 ]
Lieb, Julia [1 ]
Rosenthal, Joachim [1 ]
机构
[1] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Eindhoven Univ Technol, Dept Math & Comp Sci, De Groene Loper 5, NL-5612 AZ Eindhoven, Netherlands
基金
瑞士国家科学基金会;
关键词
  Convolutional codes; finite chain rings; MDP convolutional codes; superregular matrices; reverse superregular matrices;
D O I
10.3934/amc.2022028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we develop the theory of convolutional codes over finite commutative chain rings. In particular, we focus on maximum distance profile (MDP) convolutional codes and we provide a characterization of these codes, generalizing the one known for fields. Moreover, we relate (reverse) MDP convolutional codes over a finite chain ring with (reverse) MDP convolutional codes over its residue field. Finally, we provide a construction of (reverse) MDP convolutional codes over finite chain rings generalizing the notion of (reverse) superregular matrices.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 25 条
[21]   On the structure of linear and cyclic codes over a finite chain ring [J].
Norton, GH ;
Salagean, A .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2000, 10 (06) :489-506
[22]   On the Hamming distance of linear codes over a finite chain ring [J].
Norton, GH ;
Salagean, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :1060-1067
[23]   Low-rank parity-check codes over Galois rings [J].
Renner, Julian ;
Neri, Alessandro ;
Puchinger, Sven .
DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (02) :351-386
[24]   CODES OVER ZM, REVISITED [J].
SPIEGEL, E .
INFORMATION AND CONTROL, 1978, 37 (01) :100-104
[25]   Decoding of Convolutional Codes Over the Erasure Channel [J].
Tomas, Virtudes ;
Rosenthal, Joachim ;
Smarandache, Roxana .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (01) :90-108