A Vision Transformer Model for Convolution-Free Multilabel Classification of Satellite Imagery in Deforestation Monitoring

被引:72
作者
Kaselimi, Maria [1 ]
Voulodimos, Athanasios [2 ]
Daskalopoulos, Ioannis [3 ]
Doulamis, Nikolaos [1 ]
Doulamis, Anastasios [1 ]
机构
[1] Natl Tech Univ Athens, Sch Rural & Surveying Engn, Athens 15773, Greece
[2] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens 15773, Greece
[3] Univ West Attica, Dept Informat & Comp Engn, Athens 15773, Greece
关键词
Forestry; Transformers; Satellites; Remote sensing; Monitoring; Earth; Artificial satellites; Deforestation; multilabel image classification; self-attention; vision transformers;
D O I
10.1109/TNNLS.2022.3144791
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding the dynamics of deforestation and land uses of neighboring areas is of vital importance for the design and development of appropriate forest conservation and management policies. In this article, we approach deforestation as a multilabel classification (MLC) problem in an endeavor to capture the various relevant land uses from satellite images. To this end, we propose a multilabel vision transformer model, ForestViT, which leverages the benefits of the self-attention mechanism, obviating any convolution operations involved in commonly used deep learning models utilized for deforestation detection. Experimental evaluation in open satellite imagery datasets yields promising results in the case of MLC, particularly for imbalanced classes, and indicates ForestViT's superiority compared with well-established convolutional structures (ResNET, VGG, DenseNet, and ModileNet neural networks). This superiority is more evident for minority classes.
引用
收藏
页码:3299 / 3307
页数:9
相关论文
共 38 条
[1]   Neighborhood effects in the Brazilian Amazonia: Protected areas and deforestation [J].
Amin, A. ;
Choumert-Nkolo, J. ;
Combes, J. -L. ;
Motel, P. Combes ;
Kere, E. N. ;
Ongono-Olinga, J. -G. ;
Schwartz, S. .
JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 2019, 93 :272-288
[2]   Forest Monitoring Using Landsat Time Series Data: A Review [J].
Banskota, Asim ;
Kayastha, Nilam ;
Falkowski, Michael J. ;
Wulder, Michael A. ;
Froese, Robert E. ;
White, Joanne C. .
CANADIAN JOURNAL OF REMOTE SENSING, 2014, 40 (05) :362-384
[3]   Vision Transformers for Remote Sensing Image Classification [J].
Bazi, Yakoub ;
Bashmal, Laila ;
Rahhal, Mohamad M. Al ;
Dayil, Reham Al ;
Ajlan, Naif Al .
REMOTE SENSING, 2021, 13 (03) :1-20
[4]  
Budianto F., 2017, 909 STANF U STANF CA
[5]  
Ching D., 2019, UNDERSTANDING AMAZON
[6]  
Cordonnier J.B., 2020, IBER CONF INF SYST, DOI DOI 10.23919/cisti49556.2020.9141108
[7]   Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks [J].
de Bem, Pablo Pozzobon ;
de Carvalho Junior, Osmar Abilio ;
Guimaraes, Renato Fontes ;
Trancoso Gomes, Roberto Arnaldo .
REMOTE SENSING, 2020, 12 (06)
[8]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[9]  
Dosovitskiy A., 2021, arXiv
[10]   A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin [J].
Hansen, Matthew C. ;
Roy, David P. ;
Lindquist, Erik ;
Adusei, Bernard ;
Justice, Christopher O. ;
Altstatt, Alice .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) :2495-2513