Spectral subspaces of Sturm-Liouville operators and variable bandwidth

被引:1
作者
Celiz, Mark Jason [1 ]
Groechenig, Karlheinz [2 ]
Klotz, Andreas [2 ]
机构
[1] Univ Philippines, Inst Math, Quezon City 1101, Philippines
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Paley-Wiener space; Reproducing kernel Hilbert space; Sampling; Density condition; Sturm-Liouville theory; Spectral theory; INTERPOLATION; DENSITY; KERNEL;
D O I
10.1016/j.jmaa.2024.128225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study spectral subspaces of the Sturm-Liouville operator f bar right arrow -(pf')' on R, where p is a positive, piecewise constant function. Functions in these subspaces can be thought of as having a local bandwidth determined by 1/root p. Using the spectral theory of Sturm-Liouville operators, we make the reproducing kernel of these spectral subspaces more explicit and compute it completely in certain cases. As a contribution to sampling theory, we then prove necessary density conditions for sampling and interpolation in these subspaces and determine the critical density that separates sets of stable sampling from sets of interpolation. (c) 2024 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:30
相关论文
共 21 条
  • [1] Reproducing Kernels and Variable Bandwidth
    Aceska, R.
    Feichtinger, H. G.
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [2] Functions of variable bandwidth via time-frequency analysis tools
    Aceska, R.
    Feichtinger, H. G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 275 - 289
  • [3] Non-stationary signals: Optimal sampling and instantaneous bandwidth estimation
    Brueller, NN
    Peterfreund, N
    Porat, M
    [J]. PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1998, : 113 - 115
  • [4] Celiz M.J., 2022, Spaces of functions of variable bandwidth parametrized by piecewise constant functions
  • [5] A TRANSFORMATION METHOD FOR THE RECONSTRUCTION OF FUNCTIONS FROM NONUNIFORMLY SPACED SAMPLES
    CLARK, JJ
    PALMER, MR
    LAWRENCE, PD
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (05): : 1151 - 1165
  • [6] Dunford N., 1963, Linear Operators. Part II: Spectral Theory
  • [7] BERGMAN KERNEL AND BIHOLOMORPHIC MAPPINGS OF PSEUDOCONVEX DOMAINS
    FEFFERMAN, C
    [J]. INVENTIONES MATHEMATICAE, 1974, 26 (01) : 1 - 65
  • [8] Density of sampling and interpolation in reproducing kernel Hilbert spaces
    Fuehr, Hartmut
    Groechenig, Karlheinz
    Haimi, Antti
    Klotz, Andreas
    Romero, Jose Luis
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 663 - 686
  • [9] Grochenig K., 2024, Anal. PDE, V17
  • [10] What Is Variable Bandwidth?
    Groechenig, Karlheinz
    Klotz, Andreas
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (11) : 2039 - 2083