Two-step cold sintering of Li1.3Al0.3Ti1.7(PO4)3 composite solid electrolyte with non-equilibrium microstructures for enhanced electrochemical performance

被引:3
作者
Jiao, Jiabin [1 ]
Xie, Ziqian [1 ]
Zhang, Yangdong [1 ]
Zhao, Chunlin [1 ]
Wu, Xiao [1 ]
Lin, Tengfei [1 ]
Gao, Min [1 ]
Lin, Cong [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
IONIC-CONDUCTIVITY; BATTERIES; ANODE;
D O I
10.1039/d4ta00068d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the high ionic conductivity and low cost, Li1.3Al0.3Ti1.7(PO4)(3) (LATP) has emerged as a promising solid-state electrolyte for next-generation Li metal solid-state batteries. However, the susceptibility of LATP to side reactions with Li metal and the significant resistance at grain boundaries pose major challenges for the applications of all-solid-state batteries. In this work, the non-equilibrium microstructure at the interface of a LATP composite solid electrolyte (84 wt% LATP and 16 wt% LiTFSI) was adjusted by two-step cold sintering, reducing interfacial transport barriers for optimizing ionic transport paths and reducing sensitivity to Li metal anodes, thus increasing the ionic conductivity and interfacial stability of solid electrolytes. While preserving the original grain structure, the grain boundary resistance was significantly reduced, resulting in an impressive ionic conductivity of 7.3 x 10(-4) S cm(-1). Additionally, the solid electrolyte had a high density of 97% and demonstrated excellent interfacial compatibility and electrochemical stability by maintaining stable cycling for 2300 h at 0.1 mA h cm(-2). This further demonstrates the favorable effect of the non-equilibrium microstructure on ion transport across grain boundaries and enhancing interfacial stability, which is crucial for achieving high performance. In conclusion, two-step cold sintering, with its unique process, offers significant advantages in modulating the interfacial microstructure and presents a novel solution for interfacial engineering.
引用
收藏
页码:9766 / 9777
页数:12
相关论文
共 58 条
[1]   A High-Performance and Durable Poly(ethylene oxide)-Based Composite Solid Electrolyte for All Solid-State Lithium Battery [J].
Ban, Xiaoyao ;
Zhang, Wenqiang ;
Chen, Ning ;
Sun, Chunwen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (18) :9852-9858
[2]   Enhanced magnetic Purcell effect in room-temperature masers [J].
Breeze, Jonathan ;
Tan, Ke-Jie ;
Richards, Benjamin ;
Sathian, Juna ;
Oxborrow, Mark ;
Alford, Neil McN .
NATURE COMMUNICATIONS, 2015, 6
[3]   Microstructure and ionic conductivities of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes produced by cold sintering assisted process [J].
Cai, Hong ;
Yu, Tong ;
Xie, Dongrui ;
Sun, Benshuang ;
Cheng, Jiang ;
Li, Lu ;
Bao, Xujin ;
Zhang, Hongtao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 939
[4]   Highly Stable Quasi-Solid-State Lithium Metal Batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li Interface by a Protection Interlayer [J].
Chen, Zhen ;
Kim, Guk-Tae ;
Kim, Jae-Kwang ;
Zarrabeitia, Maider ;
Kuenzel, Matthias ;
Liang, Hai-Peng ;
Geiger, Dorin ;
Kaiser, Ute ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2021, 11 (30)
[5]   Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating [J].
Cheng, Qian ;
Li, Aijun ;
Li, Na ;
Li, Shuang ;
Zangiabadi, Amirali ;
Li, Tai-De ;
Huang, Wenlong ;
Li, Alex Ceng ;
Jin, Tianwei ;
Song, Qingquan ;
Xu, Weiheng ;
Ni, Nan ;
Zhai, Haowei ;
Dontigny, Martin ;
Zaghib, Karim ;
Chuan, Xiuyun ;
Su, Dong ;
Yan, Kai ;
Yang, Yuan .
JOULE, 2019, 3 (06) :1510-1522
[6]   Non-equilibrium microstructure of Li1.4Al0.4Ti1.6(PO4)3 superionic conductor by spark plasma sintering for enhanced ionic conductivity [J].
Duan, Shanshan ;
Jin, Hongyun ;
Yu, Junxi ;
Esfahani, Ehsan Nasr ;
Yang, Bing ;
Liu, Jiale ;
Ren, Yazhou ;
Chen, Ying ;
Lu, Luhua ;
Tian, Xiaocong ;
Hou, Shuen ;
Li, Jiangyu .
NANO ENERGY, 2018, 51 :19-25
[7]   Poly(ethylene oxide)-ethylene carbonate solid binary electrolyte with higher conductivity, lower operating temperature and fully impregnated separator for all solid-state lithium ion batteries [J].
Feng, Xiangming ;
Liu, Qingyi ;
Zheng, Jinyun ;
Xu, Yongkai ;
Chen, Weihua .
COMPOSITES COMMUNICATIONS, 2022, 29
[8]   Glass-Type Polyamorphism in Li-Garnet Thin Film Solid State Battery Conductors [J].
Garbayo, Inigo ;
Struzik, Michal ;
Bowman, William J. ;
Pfenninger, Reto ;
Stilp, Evelyn ;
Rupp, Jennifer L. M. .
ADVANCED ENERGY MATERIALS, 2018, 8 (12)
[9]   Grain Boundaries in a Lithium Aluminum Titanium Phosphate-Type Fast Lithium Ion Conducting Glass Ceramic: Microstructure and Nonlinear Ion Transport Properties [J].
Gellert, Michael ;
Gries, Katharina I. ;
Yada, Chihiro ;
Rosciano, Fabio ;
Volz, Kerstin ;
Roling, Bernhard .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (43) :22675-22678
[10]   Impact of thermal treatment on the Li-ion transport, interfacial properties, and composite preparation of LLZO garnets for solid-state electrolytes [J].
Ghorbanzade, Pedram ;
Pesce, Arianna ;
Gomez, Kerman ;
Accardo, Grazia ;
Devaraj, Shanmukaraj ;
Lopez-Aranguren, Pedro ;
del Amo, Juan Miguel Lopez .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (22) :11675-11683