Asymptotic behavior of class groups and cyclotomic Iwasawa theory of elliptic curves

被引:0
|
作者
Hiranouchi, Toshiro [1 ]
Ohshita, Tatsuya [2 ]
机构
[1] Kyushu Inst Technol, Grad Sch Engn, Dept Basic Sci, 1-1 Sensui Cho,Tobata Ku, Fukuoka 8048550, Japan
[2] Gunma Univ, Cooperat Fac Educ, Dept Math, Maebashi, Gunma 3718510, Japan
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2023年 / 35卷 / 02期
关键词
class number; elliptic curve; Iwasawa theory; CLASS-NUMBERS; P(N)-TORSION POINTS; FIELDS; VALUES;
D O I
10.5802/jtnb.1258
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study a relation between certain quotients of ideal class groups and the cyclotomic Iwasawa module X-infinity of the Pontrjagin dual of the fine Selmer group of an elliptic curve E defined over Q. We consider the Galois extension field K-n(E) of Q generated by coordinates of all p(n)-torsion points of E, and introduce a quotient A(n)(E) of the p-Sylow subgroup of the ideal class group of K-n(E) cut out by the modulo p(n) Galois representation E[p(n)]. We describe the asymptotic behavior of A(n)(E) by using the Iwasawa module X-infinity. In particular, under certain conditions, we obtain an asymptotic formula as Iwasawa's class number formula on the order of A(n)(E) by using Iwasawa's invariants of X-infinity.
引用
收藏
页码:591 / 657
页数:67
相关论文
共 50 条