Electronic optimization of heterostructured MoS2/Ni3S2 by P doping as bifunctional electrocatalysts for water splitting

被引:12
作者
Li, Wenxian [1 ,2 ,3 ]
Xing, Xin [1 ]
Ge, Riyue [1 ,4 ]
Zhang, Yanning [1 ]
Sha, Simiao [1 ]
Li, Yiran [1 ]
Cairney, Julie M. [5 ,6 ]
Zheng, Rongkun [7 ]
Li, Sean [2 ,3 ]
Liu, Bin [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[3] UNSW, UNSW Mat & Mfg Futures Inst, Sydney, NSW 2052, Australia
[4] Hong Kong Polytech Univ Hung Hom, Sch Fash & Text, Hong Kong 999077, Peoples R China
[5] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[6] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[7] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会; 中国博士后科学基金;
关键词
Heterostructure; Doping; Electronic structure; Overall water splitting; HYDROGEN EVOLUTION REACTION; HIGHLY EFFICIENT; HIGH-PERFORMANCE; MOS2; NANOSHEETS; INTERFACE; NI3S2; NI; CATALYST; GENERATION; GRAPHENE;
D O I
10.1016/j.susmat.2023.e00743
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
MoS2 is an excellent catalyst for hydrogen evolution reaction (HER) because of its close proximity to the optimum hydrogen adsorption free energy (AGH*). However, poor oxygen evolution reaction (OER) intrinsic activity, insufficient active sites, and poor conductivity hinder its application as a bifunctional electrocatalyst. Here, Ni3S2 is combined with MoS2 forming MoS2/Ni3S2 heterostructure due to its intrinsic OER activity and P is chosen as an anion dopant to optimize AGH* due to its near-thermoneutral H adsorption to explore the bifunctional performance of MoS2 based nanocomposites. The electronic configurations of Mo, Ni, and S on the interface are modulated by P doping, which optimizes their adsorption/desorption ability of intermediates. The synergistic effect of anion doping and heterostructure induces excellent catalytic activity in P40-MoS2/Ni3S2-5 (Mo to S molar ratio of 1:5 and 40 mg P dopants) with overpotentials of 142 mV for HER and 278 mV for OER at 100 mA cm-2 in 1.0 M KOH solution. The voltage of overall water splitting is 1.76 V using P40-MoS2/Ni3S2-5 as the anode and cathode. This work elucidates a method of optimizing the electronic structure by doping P anion in heterointerface, providing an avenue to boost the catalytic activity of non-noble metal-based catalysts.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Chrysanthemum-like FeS/Ni3S2 heterostructure nanoarray as a robust bifunctional electrocatalyst for overall water splitting
    Li, Hui
    Yang, Shilong
    Wei, Wei
    Zhang, Mingmei
    Jiang, Zhifeng
    Yan, Zaoxue
    Xie, Jimin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 608 : 536 - 548
  • [32] Efficient bifunctional vanadium-doped Ni3S2 nanorod array for overall water splitting
    Guo, Jinxue
    Zhang, Ke
    Sun, Yanfang
    Liu, Qingyun
    Tang, Lin
    Zhang, Xiao
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (02) : 443 - 450
  • [33] Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range
    Yang, Yan
    Yao, Huiqin
    Yu, Zihuan
    Islam, Saiful M.
    He, Haiying
    Yuan, Mengwei
    Yue, Yonghai
    Xu, Kang
    Hao, Weichang
    Sun, Genban
    Li, Huifeng
    Ma, Shulan
    Zapol, Peter
    Kanatzidis, Mercouri G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (26) : 10417 - 10430
  • [34] Hierarchical MoS2/Ni3S2 core-shell nanofibers for highly efficient and stable overall-water-splitting in alkaline media
    Wang, Faze
    Wu, Hao
    Sun, Hong
    Ma, Li
    Shen, Wenzhong
    Li, Yanbo
    Zheng, Maojun
    MATERIALS TODAY ENERGY, 2018, 10 : 214 - 221
  • [35] Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting
    Peng, Lishan
    Shen, Jingjun
    Zheng, Xingqun
    Xiang, Rui
    Deng, Mingming
    Mao, Zhanxin
    Feng, Zhiping
    Zhang, Ling
    Li, Li
    Wei, Zidong
    JOURNAL OF CATALYSIS, 2019, 369 : 345 - 351
  • [36] Cd doped Ni3S2 nanosheet arrays grown on nickel foam as highly efficient and robust bifunctional electrocatalysts for alkaline overall water splitting
    Yan, Haiqing
    Deng, Ruxin
    Zhang, Siqi
    Yao, Huiqin
    Duan, Jiacheng
    Bai, Hanchen
    Li, Yongliang
    Liu, Rong
    Shi, Keren
    Ma, Shulan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 954
  • [37] Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting
    Wang, Xinqiang
    Wang, Bin
    Chen, Yuanfu
    Wang, Mengya
    Wu, Qi
    Srinivas, Katam
    Yu, Bo
    Zhang, Xiaojuan
    Ma, Fei
    Zhang, Wanli
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 105 : 266 - 273
  • [38] Heterostructured Ni(OH)2/Ni3S2 Supported on Ni Foam as Highly Efficient and Durable Bifunctional Electrodes for Overall Water Electrolysis
    Li, Jingwei
    Jiang, Lijuan
    He, Shuai
    Wei, Licheng
    Zhou, Rongfu
    Zhang, Jinming
    Yuan, Dingsheng
    Jiang, San Ping
    ENERGY & FUELS, 2019, 33 (11) : 12052 - 12062
  • [39] Heterostructured MoO2@MoS2@Co9S8 nanorods as high efficiency bifunctional electrocatalyst for overall water splitting
    Li, Yanqiang
    Wang, Chao
    Cui, Ming
    Xiong, Jiabin
    Mi, Liwei
    Chen, Siru
    APPLIED SURFACE SCIENCE, 2021, 543
  • [40] Co-doped Ni3S2 hierarchical nanoarrays derived from zeolitic imidazolate frameworks as bifunctional electrocatalysts for highly enhanced overall-water-splitting activity
    Song, Shiwei
    Wang, Yanhui
    Li, Wei
    Tian, Pengfei
    Zhou, Shuyu
    Gao, Hongwei
    Tian, Xueqing
    Zang, Jianbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 827