Effects of Different Ambient Conditions on Mechanical Properties of 3D Printing Parts Produced with Fused Deposition Modeling

被引:0
作者
Celik, Talip [1 ]
Dizdar, Ayberk [1 ]
机构
[1] Kocaeli Univ, Dept Biomed Engn, Umuttepe Campus, TR-41001 Izmit, Kocaeli, Turkiye
关键词
3D printer; ambient conditions; fused deposition modeling; mechanical properties; polylactic acid; PLA;
D O I
10.1007/s11665-023-08709-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The technology of additive manufacturing has advantages for prototyping. In certain instances, it may be preferable to use 3D-printed components as the primary component making it essential for these components to have sufficient mechanical properties. Therefore, the effect of ambient conditions on the mechanical properties of these components can be quite significant. In this study, the effect of different ambient conditions on the mechanical properties of 3D-printed PLA parts was investigated. Three specific conditions were considered for this purpose: hot-dry air, hot water, and cold-dry air. Standard samples were fabricated using a 3D-printer and then subjected to the aforementioned environments for 30-min before being tested with a universal testing device. The yield strength, maximum strength, elastic modulus, and toughness values were obtained from the resulting stress-strain graphs of the printed components. The study revealed that ambient conditions significantly affect the mechanical strength of PLA components. Notably, the components retained their tensile strength in cold and dry environments, whereas their mechanical properties deteriorated under wet conditions. Additionally, cold conditions appeared to enhance the mechanical properties of the printed components. In conclusion, it was determined that variable ambient conditions can either degrade or improve the mechanical properties of PLA-printed components.
引用
收藏
页码:11015 / 11022
页数:8
相关论文
共 50 条
  • [1] Mechanical properties of 3D parts fabricated by fused deposition modeling: Effect of various fillers in polylactide
    Gao, Xia
    Zhang, Daijun
    Qi, Shunxin
    Wen, Xiangning
    Su, Yunlan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (31)
  • [2] Effects of Build Orientation on Mechanical Properties of Fused Deposition Modeling Parts
    Beattie, Nicholas
    Bock, Noah
    Anderson, Timothy
    Edgeworth, Trevor
    Kloss, Tom
    Swanson, Jacob
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (07) : 5059 - 5065
  • [3] Mechanical properties of thermoplastic parts produced by fused deposition modeling: a review
    Bakir, Ali Alperen
    Atik, Resul
    Ozerinc, Sezer
    RAPID PROTOTYPING JOURNAL, 2021, 27 (03) : 537 - 561
  • [4] Effects of Printing Temperature and Filling Percentage on the Mechanical Behavior of Fused Deposition Molding Technology Components for 3D Printing
    Hsueh, Ming-Hsien
    Lai, Chao-Jung
    Liu, Kuan-Yin
    Chung, Cheng-Feng
    Wang, Shi-Hao
    Pan, Chieh-Yu
    Huang, Wen-Chen
    Hsieh, Chia-Hsin
    Zeng, Yu-Shan
    POLYMERS, 2021, 13 (17)
  • [5] Investigation of the Influence of Fused Deposition Modeling 3D Printing Process Parameters on Tensile Properties of Polylactic Acid Parts Using the Taguchi Method
    Megersa, Getu Koro
    Sitek, Wojciech
    Nowak, Agnieszka J.
    Tomasic, Neven
    MATERIALS, 2024, 17 (23)
  • [6] Finite Element Analysis of Warping and Mechanical Properties of 3D Parts Printed by Fused Deposition Modeling
    Yu, Baiqing
    Chen, Guoguang
    Sun, Jingfeng
    Hua, Weijian
    Wu, Weibin
    Jin, Yifei
    Zhou, Wuyi
    Liu, Jia
    Zheng, Wenxu
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025, 34 (03) : 2410 - 2423
  • [7] The Fused Deposition Modeling 3D Printing
    Yan, Longwei
    Sun, Huichao
    Qu, Xingtian
    Zhou, Wei
    Proceedings of the 2016 International Conference on Electrical, Mechanical and Industrial Engineering (ICEMIE), 2016, 51 : 201 - 203
  • [8] Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing
    Weng, Zixiang
    Wang, Jianlei
    Senthil, T.
    Wu, Lixin
    MATERIALS & DESIGN, 2016, 102 : 276 - 283
  • [9] Effects of Build Orientation on Mechanical Properties of Fused Deposition Modeling Parts
    Nicholas Beattie
    Noah Bock
    Timothy Anderson
    Trevor Edgeworth
    Tom Kloss
    Jacob Swanson
    Journal of Materials Engineering and Performance, 2021, 30 : 5059 - 5065
  • [10] Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review
    Wasti, Sanjita
    Adhikari, Sushil
    FRONTIERS IN CHEMISTRY, 2020, 8