HERMITE-HADAMARD TYPE INEQUALITIES FOR CONFORMABLE INTEGRALS VIA η-CONVEX FUNCTIONS

被引:0
作者
Khurshid, Yousaf [1 ]
Khan, Muhammad Adil [1 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar, Pakistan
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2023年 / 38卷 / 01期
关键词
& eta; -convex functions; Hermite-Hadamard inequality; Conformable derivative; Conformable integrals; DIFFERENTIABLE MAPPINGS; FRACTIONAL INTEGRALS; REAL NUMBERS;
D O I
10.22190/FUMI220914005K
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many recent results have been. This inequality has many applications in the area of pure and applied mathematics. In this paper, our main aim is to give results for conformable integral version of Hermite-Hadamard inequality for ?-convex functions. First, we prove an identity associated with the Hermite-Hadamard inequality for conformable integrals using ?-convex functions. By using this identity and ?-convexity of function and some well-known inequalities, we obtain several results for the inequality.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 49 条
[1]  
Abdeljawad T., 2018, J INEQUAL APPL, V2018, P1
[2]   A generalized Lyapunov-type inequality in the frame of conformable derivatives [J].
Abdeljawad, Thabet ;
Alzabut, Jehad ;
Jarad, Fahd .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[3]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[4]  
Akdemir AO, 2017, J NONLINEAR CONVEX A, V18, P661
[5]   Fundamental Results of Conformable Sturm-Liouville Eigenvalue Problems [J].
Al-Refai, Mohammed ;
Abdeljawad, Thabet .
COMPLEXITY, 2017,
[6]  
Anderson D.R., 2016, CONTRIBUTIONS MATH E, P25, DOI [10.1007/978-3-319-31317-72, DOI 10.1007/978-3-319-31317-72]
[7]   Inequalities for α-fractional differentiable functions [J].
Chu, Yu-Ming ;
Khan, Muhammad Adil ;
Ali, Tahir ;
Dragomir, Sever Silvestru .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[8]   Fractional Newton mechanics with conformable fractional derivative [J].
Chung, Won Sang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 :150-158
[9]  
DRAGOMIR S. S., 2005, J INEQUAL PURE APPL, V6, P46
[10]  
Dragomir S.S., 1999, Demonstr. Math, V32, P687, DOI [DOI 10.1515/dema-1999-0403, DOI 10.1515/DEMA-1999-0403]