Photonic Orbital Angular Momentum Dichroism on Three-Dimensional Chiral Oligomers

被引:9
作者
Cao, Yang [1 ]
Liu, Shunli [1 ]
Tao, Yuan [1 ]
Wang, Xinghao [1 ]
Ni, Jincheng [1 ]
Wang, Chaowei [1 ]
Zheng, Xinyuan [1 ]
Li, Jiawen [1 ]
Hu, Yanlei [1 ]
Wu, Dong [1 ]
Chu, Jiaru [1 ]
机构
[1] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Key Lab Precis Sci Instrumentat Anhui Higher Educ, Hefei Natl Lab Phys Sci Microscale,CAS Key Lab Mec, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
chiral oligomers; chiral center; optical vortex; orbital angular momentum; helical dichroism; LIGHT; NANOSTRUCTURES; LAYERS;
D O I
10.1021/acsphotonics.3c00266
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Chiral oligomers in optics are photonic metamaterialsinspiredby the concept of chiral centers in chemistry. In recent years, chiraloligomers have attracted increasing attention in recent years dueto their simple construction and unique chiroptical response. To date,research has predominantly focused on the photonic spin angular momentum(SAM)-dependent chiroptical response: circular dichroism (CD). However,for another photonic dimension parallel to the SAM, orbital angularmomentum (OAM)-dominated chiroptical response of chiral oligomersstill remains elusive. Here, we theoretically and experimentally demonstratethe individual three-dimensional (3D) chiral tetramers can exhibita gigantic response to the photonic OAM with a maximum helical dichroism(HD) of similar to 23%. Meanwhile, we also reveal the origin of the HDvia simulation analysis of electric current distribution, reflectedelectric field, and the discrete OAM spectroscopy. Furthermore, byfemtosecond direct laser writing, 3D oligomers with tailoring geometricparameters can be flexibly fabricated in one step for varying HD responses.Our research fills the gap of OAM-related chiroptical response ofchiral oligomers, which has great implications for chiroptical spectroscopyand photonic angular momentum engineering.
引用
收藏
页码:1873 / 1881
页数:9
相关论文
共 52 条
[1]   Induced Chirality through Electromagnetic Coupling between Chiral Molecular Layers and Plasmonic Nanostructures [J].
Abdulrahman, Nadia A. ;
Fan, Z. ;
Tonooka, Taishi ;
Kelly, Sharon M. ;
Gadegaard, Nikolaj ;
Hendry, Euan ;
Govorov, Alexander O. ;
Kadodwala, Malcolm .
NANO LETTERS, 2012, 12 (02) :977-983
[2]   Putting chirality to work: The strategy of chiral switches [J].
Agranat, I ;
Caner, H ;
Caldwell, A .
NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (10) :753-768
[3]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[4]   Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection [J].
Banzer, Peter ;
Wozniak, Pawel ;
Mick, Uwe ;
De Leon, Israel ;
Boyd, Robert W. .
NATURE COMMUNICATIONS, 2016, 7
[5]   ORBITAL ANGULAR-MOMENTUM AND NONPARAXIAL LIGHT-BEAMS [J].
BARNETT, SM ;
ALLEN, L .
OPTICS COMMUNICATIONS, 1994, 110 (5-6) :670-678
[6]   THE ORIGIN AND AMPLIFICATION OF BIOMOLECULAR CHIRALITY [J].
BONNER, WA .
ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES, 1991, 21 (02) :59-111
[7]  
Bruice P. Y., 2006, ESSENTIAL ORGANIC CH
[8]   Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials [J].
Chen, Wei ;
Bian, Ai ;
Agarwal, Ashish ;
Liu, Liqiang ;
Shen, Hebai ;
Wang, Libing ;
Xu, Chuanlai ;
Kotov, Nicholas A. .
NANO LETTERS, 2009, 9 (05) :2153-2159
[9]   Multidimensional nanoscopic chiroptics [J].
Chen, Yang ;
Du, Wei ;
Zhang, Qing ;
Avalos-Ovando, Oscar ;
Wu, Jing ;
Xu, Qing-Hua ;
Liu, Na ;
Okamoto, Hiromi ;
Govorov, Alexander O. ;
Xiong, Qihua ;
Qiu, Cheng-Wei .
NATURE REVIEWS PHYSICS, 2022, 4 (02) :113-124
[10]   Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum [J].
Chong, Andy ;
Wan, Chenhao ;
Chen, Jian ;
Zhan, Qiwen .
NATURE PHOTONICS, 2020, 14 (06) :350-+