共 33 条
[3]
FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning
[J].
APPLIED SCIENCES-BASEL,
2020, 10 (08)
[4]
Beutel DJ, 2022, Arxiv, DOI [arXiv:2007.14390, 10.48550/arXiv.2007.14390, DOI 10.48550/ARXIV.2007.14390]
[6]
Brendan M.H., 2016, arXiv, DOI [10.48550/arXiv.1602.05629, DOI 10.48550/ARXIV.1602.05629]
[7]
C2S: Class-aware client selection for effective aggregation in federated learning
[J].
HIGH-CONFIDENCE COMPUTING,
2022, 2 (03)
[9]
Dalianis H., 2018, Clin. Text Min.: Second. Use Electron. Patient Rec., P45, DOI DOI 10.1007/978-3-319-78503-56
[10]
Federated vs. Centralized Machine Learning under Privacy-elastic Users: A Comparative Analysis
[J].
2020 IEEE 19TH INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA),
2020,