PLA bioplastic production: From monomer to the polymer

被引:66
作者
Yu, Jiaming [1 ,2 ]
Xu, Shengchao [1 ,2 ]
Liu, Biao [1 ,2 ]
Wang, Hailan [1 ,2 ]
Qiao, Fengmin [1 ,2 ]
Ren, Xiulian [1 ,2 ]
Wei, Qifeng [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Sch Marine Sci & Technol, Weihai 264209, Peoples R China
关键词
Lactic acid; Lactide; Poly(lactic acid); Purification; Production; RING-OPENING POLYMERIZATION; L-LACTIC ACID; POLY(LACTIC ACID); POLY(L-LACTIC ACID); FERMENTATION BROTH; THERMODYNAMIC PROPERTIES; CATALYTIC PYROLYSIS; PHASE-BEHAVIOR; IONIC LIQUIDS; PURIFICATION;
D O I
10.1016/j.eurpolymj.2023.112076
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(lactic acid) (PLA) plastics is of great significance to the sustainable development of the world. Today, most PLA is prepared by ring-opening polymerization of lactide (LT) synthesized from lactic acid (LA). The production capacity of high-quality LA is the basis for the production of PLA bioplastics. And, as the key intermediate for PLA synthesis, lactide (LT) also has a profound impact on the whole PLA industrial chain. The production ca-pacity of LT is directly related to the application scale of PLA, and chemical purity and optical purity of LT significantly affect the properties of synthesized PLA. In this work, the research progresses on LA, LT, and PLA in recent years are sorted out to provide a comprehensively and systematic review. Apart from the introduction of the whole process of PLA production, this review highlights some of the latest methods with significant ad-vantages in energy consumption, reaction integration, efficiency and yield in the production process.
引用
收藏
页数:30
相关论文
共 220 条
  • [11] Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties-From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications
    Balla, Evangelia
    Daniilidis, Vasileios
    Karlioti, Georgia
    Kalamas, Theocharis
    Stefanidou, Myrika
    Bikiaris, Nikolaos D.
    Vlachopoulos, Antonios
    Koumentakou, Ioanna
    Bikiaris, Dimitrios N.
    [J]. POLYMERS, 2021, 13 (11)
  • [12] Bellis H.E., 1992, GOOGLE PATENTS
  • [13] Phase behaviour of pseudo-binary systems of pressurized ((propane plus L,L-lactide)) at different ethanol to L,L-lactide mole ratios
    Bender, Joao P.
    Tres, Marcus V.
    Corazza, Marcos L.
    Ferreira, Sandra R. S.
    Oliveira, J. Vladimir
    [J]. JOURNAL OF CHEMICAL THERMODYNAMICS, 2014, 78 : 120 - 127
  • [14] Benecke H.P., 1994, GOOGLE PATENTS
  • [15] BHATIA Kamlesh, THIN FILM DEPOLYMERI
  • [16] Bona A., 2020, MEMBRANES, V10, P15
  • [17] Depolymerization of lactic acid oligomers into lactide: Epimerization, stereocomplex formation, and nature of interactions of oligomers
    Botvin, Vladimir
    Karaseva, Svetlana
    Khasanov, Victor
    [J]. POLYMER DEGRADATION AND STABILITY, 2020, 182
  • [18] Recent advances in the controlled preparation of poly(α-hydroxy acids):: Metal-free catalysts and new monomers
    Bourissou, Didier
    Moebs-Sanchez, Sylvie
    Martin-Vaca, Blance
    [J]. COMPTES RENDUS CHIMIE, 2007, 10 (09) : 775 - 794
  • [19] Infrared spectroscopic determination of lactide concentration in polylactide: An improved methodology
    Braun, Birgit
    Dorgan, John R.
    Dec, Steven F.
    [J]. MACROMOLECULES, 2006, 39 (26) : 9302 - 9310
  • [20] Cell-free chemoenzymatic starch synthesis from carbon dioxide
    Cai, Tao
    Sun, Hongbing
    Qiao, Jing
    Zhu, Leilei
    Zhang, Fan
    Zhang, Jie
    Tang, Zijing
    Wei, Xinlei
    Yang, Jiangang
    Yuan, Qianqian
    Wang, Wangyin
    Yang, Xue
    Chu, Huanyu
    Wang, Qian
    You, Chun
    Ma, Hongwu
    Sun, Yuanxia
    Li, Yin
    Li, Can
    Jiang, Huifeng
    Wang, Qinhong
    Ma, Yanhe
    [J]. SCIENCE, 2021, 373 (6562) : 1523 - +