Language-Augmented Pixel Embedding for Generalized Zero-Shot Learning

被引:11
作者
Wang, Ziyang [1 ,2 ]
Gou, Yunhao [1 ,2 ]
Li, Jingjing [2 ]
Zhu, Lei [3 ]
Shen, Heng Tao [3 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313002, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Visualization; Task analysis; Feature extraction; Image recognition; Annotations; Knowledge transfer; Zero-shot learning; transfer learning; attention mechanism;
D O I
10.1109/TCSVT.2022.3208256
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Zero-shot Learning (ZSL) aims to recognize novel classes through seen knowledge. The canonical approach to ZSL leverages a visual-to-semantic embedding to map the global features of an image sample to its semantic representation. These global features usually overlook the fine-grained information which is vital for knowledge transfer between seen and unseen classes, rendering these features sub-optimal for ZSL task, especially the more realistic Generalized Zero-shot Learning (GZSL) task where global features of similar classes could hardly be separated. To provide a remedy to this problem, we propose Language-Augmented Pixel Embedding (LAPE) that directly bridges the visual and semantic spaces in a pixel-based manner. To this end, we map the local features of each pixel to different attributes and then extract each semantic attribute from the corresponding pixel. However, the lack of pixel-level annotation conduces to an inefficient pixel-based knowledge transfer. To mitigate this dilemma, we adopt the text information of each attribute to augment the local features of image pixels which are related to the semantic attributes. Experiments on four ZSL benchmarks demonstrate that LAPE outperforms current state-of-the-art methods. Comprehensive ablation studies and analyses are provided to dissect what factors lead to this success.
引用
收藏
页码:1019 / 1030
页数:12
相关论文
共 50 条
  • [41] Learning discriminative visual semantic embedding for zero-shot recognition
    Xie, Yurui
    Song, Tiecheng
    Yuan, Jianying
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 115
  • [42] Generalized Zero-Shot Learning with Noisy Labeled Data
    Xu, Liqing
    Liu, Xueliang
    Jiang, Yishun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI, 2024, 14435 : 289 - 300
  • [43] Class-Incremental Generalized Zero-Shot Learning
    Zhenfeng Sun
    Rui Feng
    Yanwei Fu
    Multimedia Tools and Applications, 2023, 82 : 38233 - 38247
  • [44] Prototype-Augmented Self-Supervised Generative Network for Generalized Zero-Shot Learning
    Wu, Jiamin
    Zhang, Tianzhu
    Zha, Zheng-Jun
    Luo, Jiebo
    Zhang, Yongdong
    Wu, Feng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1938 - 1951
  • [45] Transductive Visual-Semantic Embedding for Zero-shot Learning
    Xu, Xing
    Shen, Fumin
    Yang, Yang
    Shao, Jie
    Huang, Zi
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 41 - 49
  • [46] Exploring Attribute Space with Word Embedding for Zero-shot Learning
    Zhang, Zhaocheng
    Yang, Gang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [47] Discriminative Embedding Autoencoder With a Regressor Feedback for Zero-Shot Learning
    Shi, Ying
    Wei, Wei
    IEEE ACCESS, 2020, 8 : 11019 - 11030
  • [48] Differential Refinement Network for Zero-Shot Learning
    Tian, Yi
    Zhang, Yilei
    Huang, Yaping
    Xu, Wanru
    Ding, Zhengming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 4164 - 4178
  • [49] Hierarchical Prototype Learning for Zero-Shot Recognition
    Zhang, Xingxing
    Gui, Shupeng
    Zhu, Zhenfeng
    Zhao, Yao
    Liu, Ji
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (07) : 1692 - 1703
  • [50] ONLINE ADAPTATIVE ZERO-SHOT LEARNING SPOKEN LANGUAGE UNDERSTANDING USING WORD-EMBEDDING
    Ferreira, Emmanuel
    Jabaian, Bassam
    Lefevre, Fabrice
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 5321 - 5325