Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach

被引:17
|
作者
Das, Himanish Shekhar [1 ]
Das, Akalpita [2 ]
Neog, Anupal [3 ]
Mallik, Saurav [4 ,5 ,6 ]
Bora, Kangkana [1 ]
Zhao, Zhongming [4 ,7 ]
机构
[1] Cotton Univ, Dept Comp Sci & Informat Technol, Gauhati, India
[2] GIMT Guwahati, Dept Comp Sci & Engn, Gauhati, India
[3] IQVIA, Dept AI & Machine Learning COE, Bengaluru, Karnataka, India
[4] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, Boston, MA USA
[6] Univ Arizona, Dept Pharmacol & Toxicol, Tucson, AZ USA
[7] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Pathol & Lab Med, Houston, TX 77030 USA
关键词
breast cancer; medical imaging; deep learning; convolutional neural networks; transfer learning; CLASSIFICATION; MAMMOGRAMS; SYSTEM; MODEL;
D O I
10.3389/fgene.2022.1097207
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Of all the cancers that afflict women, breast cancer (BC) has the second-highest mortality rate, and it is also believed to be the primary cause of the high death rate. Breast cancer is the most common cancer that affects women globally. There are two types of breast tumors: benign (less harmful and unlikely to become breast cancer) and malignant (which are very dangerous and might result in aberrant cells that could result in cancer). Methods: To find breast abnormalities like masses and micro-calcifications, competent and educated radiologists often examine mammographic images. This study focuses on computer-aided diagnosis to help radiologists make more precise diagnoses of breast cancer. This study aims to compare and examine the performance of the proposed shallow convolutional neural network architecture having different specifications against pre-trained deep convolutional neural network architectures trained on mammography images. Mammogram images are pre-processed in this study's initial attempt to carry out the automatic identification of BC. Thereafter, three different types of shallow convolutional neural networks with representational differences are then fed with the resulting data. In the second method, transfer learning via fine-tuning is used to feed the same collection of images into pre-trained convolutional neural networks VGG19, ResNet50, MobileNet-v2, Inception-v3, Xception, and Inception-ResNet-v2. Results: In our experiment with two datasets, the accuracy for the CBIS-DDSM and INbreast datasets are 80.4%, 89.2%, and 87.8%, 95.1% respectively. Discussion: It can be concluded from the experimental findings that the deep network-based approach with precise tuning outperforms all other state-of-the-art techniques in experiments on both datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] An efficient deep Convolutional Neural Network based detection and classification of Acute Lymphoblastic Leukemia
    Das, Pradeep Kumar
    Meher, Sukadev
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
  • [32] A Computer-Aided Diagnosis System for Breast Cancer Using Deep Convolutional Neural Networks
    Benzebouchi, Nacer Eddine
    Azizi, Nabiha
    Ayadi, Khaled
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 583 - 593
  • [33] Breast Cancer Histopathology Image Classification with Deep Convolutional Neural Networks
    Adeshina, Steve A.
    Adedigba, Adeyinka P.
    Adeniyi, Ahmed A.
    Aibinu, Abiodun M.
    2018 14TH INTERNATIONAL CONFERENCE ON ELECTRONICS COMPUTER AND COMPUTATION (ICECCO), 2018,
  • [34] Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis
    Rakhlin, Alexander
    Shvets, Alexey
    Iglovikov, Vladimir
    Kalinin, Alexandr A.
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 737 - 744
  • [35] A Novel Convolutional Neural Networks-Fused Shallow Classifier for Breast Cancer Detection
    Alduraibi, Sharifa Khalid
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (02) : 1321 - 1334
  • [36] Cervical Cancer Cell Detection Based on Deep Convolutional Neural Network
    Xia, Mingyang
    Zhang, Guoshan
    Mu, Chaoxu
    Guan, Bin
    Wang, Mengxuan
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6527 - 6532
  • [37] Acupoint Detection Based on Deep Convolutional Neural Network
    Sun, Lingyao
    Sun, Shiying
    Fu, Yuanbo
    Zhao, Xiaoguang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7418 - 7422
  • [38] The Application of Deep Convolutional Neural Networks to Brain Cancer Images: A Survey
    Zadeh Shirazi, Amin
    Fornaciari, Eric
    McDonnell, Mark D.
    Yaghoobi, Mahdi
    Cevallos, Yesenia
    Tello-Oquendo, Luis
    Inca, Deysi
    Gomez, Guillermo A.
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 27
  • [39] A Gradient Boosting Approach for Training Convolutional and Deep Neural Networks
    Emami, Seyedsaman
    Martinez-Munoz, Gonzalo
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2023, 4 : 313 - 321
  • [40] Breast Cancer Detection in Thermography Using Convolutional Neural Networks (CNNs) with Deep Attention Mechanisms
    Alshehri, Alia
    AlSaeed, Duaa
    APPLIED SCIENCES-BASEL, 2022, 12 (24):