Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach

被引:17
|
作者
Das, Himanish Shekhar [1 ]
Das, Akalpita [2 ]
Neog, Anupal [3 ]
Mallik, Saurav [4 ,5 ,6 ]
Bora, Kangkana [1 ]
Zhao, Zhongming [4 ,7 ]
机构
[1] Cotton Univ, Dept Comp Sci & Informat Technol, Gauhati, India
[2] GIMT Guwahati, Dept Comp Sci & Engn, Gauhati, India
[3] IQVIA, Dept AI & Machine Learning COE, Bengaluru, Karnataka, India
[4] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, Boston, MA USA
[6] Univ Arizona, Dept Pharmacol & Toxicol, Tucson, AZ USA
[7] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Pathol & Lab Med, Houston, TX 77030 USA
关键词
breast cancer; medical imaging; deep learning; convolutional neural networks; transfer learning; CLASSIFICATION; MAMMOGRAMS; SYSTEM; MODEL;
D O I
10.3389/fgene.2022.1097207
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Of all the cancers that afflict women, breast cancer (BC) has the second-highest mortality rate, and it is also believed to be the primary cause of the high death rate. Breast cancer is the most common cancer that affects women globally. There are two types of breast tumors: benign (less harmful and unlikely to become breast cancer) and malignant (which are very dangerous and might result in aberrant cells that could result in cancer). Methods: To find breast abnormalities like masses and micro-calcifications, competent and educated radiologists often examine mammographic images. This study focuses on computer-aided diagnosis to help radiologists make more precise diagnoses of breast cancer. This study aims to compare and examine the performance of the proposed shallow convolutional neural network architecture having different specifications against pre-trained deep convolutional neural network architectures trained on mammography images. Mammogram images are pre-processed in this study's initial attempt to carry out the automatic identification of BC. Thereafter, three different types of shallow convolutional neural networks with representational differences are then fed with the resulting data. In the second method, transfer learning via fine-tuning is used to feed the same collection of images into pre-trained convolutional neural networks VGG19, ResNet50, MobileNet-v2, Inception-v3, Xception, and Inception-ResNet-v2. Results: In our experiment with two datasets, the accuracy for the CBIS-DDSM and INbreast datasets are 80.4%, 89.2%, and 87.8%, 95.1% respectively. Discussion: It can be concluded from the experimental findings that the deep network-based approach with precise tuning outperforms all other state-of-the-art techniques in experiments on both datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Convolutional neural networks for breast cancer detection in mammography: A survey
    Abdelrahman, Leila
    Al Ghamdi, Manal
    Collado-Mesa, Fernando
    Abdel-Mottaleb, Mohamed
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 131
  • [22] Breast cancer detection using deep convolutional neural networks and support vector machines
    Ragab, Dina A.
    Sharkas, Maha
    Marshall, Stephen
    Ren, Jinchang
    PEERJ, 2019, 7
  • [23] Mammogram-Based Cancer Detection Using Deep Convolutional Neural Networks
    Ahmed, Al Hussein
    Salem, Mohammed A-M.
    PROCEEDINGS OF 2018 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2018, : 694 - 699
  • [24] Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection
    Wahab, Noorul
    Khan, Asifullah
    Lee, Yeon Soo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 85 : 86 - 97
  • [25] Deep Convolutional Neural Networks for pedestrian detection
    Tome, D.
    Monti, F.
    Baroffio, L.
    Bondi, L.
    Tagliasacchi, M.
    Tubaro, S.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 47 : 482 - 489
  • [26] Deep convolutional neural network and emotional learning based breast cancer detection using digital mammography
    Chouhan, Naveed
    Khan, Asifullah
    Shah, Jehan Zeb
    Hussnain, Mazhar
    Khan, Muhammad Waleed
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132
  • [27] DETECTION OF CEREBRAL MICROBLEEDING BASED ON DEEP CONVOLUTIONAL NEURAL NETWORK
    Lu, Siyuan
    Lu, Zhihai
    Hou, Xiaoxia
    Cheng, Hong
    Wang, Shuihua
    2017 14TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2017, : 93 - 96
  • [28] A PROPOSED CONVOLUTIONAL NEURAL NETWORK FOR BREAST CANCER DIAGNOSES
    Kadhim, Noor Kareem
    Al-khateeb, Belal
    Ahmed, Huda Wadah
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 21 (01) : 9 - 18
  • [29] Breast cancer pathological image classification based on a convolutional neural network
    Yu L.
    Xia Y.
    Yan Y.
    Wang P.
    Cao W.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (04): : 567 - 573
  • [30] Convolutional neural network-based models for diagnosis of breast cancer
    Mehedi Masud
    Amr E. Eldin Rashed
    M. Shamim Hossain
    Neural Computing and Applications, 2022, 34 : 11383 - 11394