SAFaD: A System for Automatic Fall Detection on Surveillance Imagery

被引:0
作者
Perez-Lopez, Borja [1 ]
Gomez-Donoso, Francisco [1 ]
Cazorla, Miguel [1 ]
机构
[1] Univ Alicante, Inst Comp Res, POB 99, Alicante, Spain
来源
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2 | 2023年 / 590卷
关键词
Fall detection; Machine learning; Image analysis; Ensemble;
D O I
10.1007/978-3-031-21062-4_46
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this work we introduce SAFaD: A System for Automatic Fall Detection on Surveillance Imagery. Our system heavily relies in an intermediate representation that allows us to accurately and optimally encode the motion of a person. An ensemble of different approaches use this volume as input to predict whether a fall event has happened. We tested out system with a state-of-the-art fall detection dataset reaching a 62.86% accuracy.
引用
收藏
页码:564 / 575
页数:12
相关论文
共 13 条
[1]   Motion history image: its variants and applications [J].
Ahad, Md. Atiqur Rahman ;
Tan, J. K. ;
Kim, H. ;
Ishikawa, S. .
MACHINE VISION AND APPLICATIONS, 2012, 23 (02) :255-281
[2]  
[Anonymous], 2021, Facts about Falls
[3]  
Chen Ziwei, 2022, Big Data: 9th CCF Conference, BigData 2021, Revised Selected Papers. Communications in Computer and Information Science (1496), P283, DOI 10.1007/978-981-16-9709-8_19
[4]   The representation and recognition of human movement using temporal templates [J].
Davis, JW ;
Bobick, AF .
1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, :928-934
[5]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[6]   mmFall: Fall Detection Using 4-D mmWave Radar and a Hybrid Variational RNN AutoEncoder [J].
Jin, Feng ;
Sengupta, Arindam ;
Cao, Siyang .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (02) :1245-1257
[7]  
Cañas JM, 2011, STUD COMPUT INTELL, V372, P225
[8]   Motion and Region Aware Adversarial Learning for Fall Detection with Thermal Imaging [J].
Mehta, Vineet ;
Dhall, Abhinav ;
Pal, Sujata ;
Khan, Shehroz S. .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :6321-6328
[9]   DeepFall: Non-Invasive Fall Detection with Deep Spatio-Temporal Convolutional Autoencoders [J].
Nogas, Jacob ;
Khan, Shehroz S. ;
Mihailidis, Alex .
JOURNAL OF HEALTHCARE INFORMATICS RESEARCH, 2020, 4 (01) :50-70
[10]   Detecting Falls with Wearable Sensors Using Machine Learning Techniques [J].
Ozdemir, Ahmet Turan ;
Barshan, Billur .
SENSORS, 2014, 14 (06) :10691-10708