Micro-Transfer Printing for Heterogeneous Si Photonic Integrated Circuits

被引:29
作者
Roelkens, Gunther [1 ]
Zhang, Jing [1 ]
Bogaert, Laurens [1 ]
Billet, Maximilien [1 ]
Wang, Dongbo [1 ]
Pan, Biwei [1 ]
Kruckel, Clemens J. [1 ]
Soltanian, Emadreza [1 ]
Maes, Dennis [1 ]
Vanackere, Tom [1 ]
Vandekerckhove, Tom [1 ]
Cuyvers, Stijn [1 ]
De Witte, Jasper [1 ]
Lufungula, Isaac Luntadila [1 ]
Guo, Xin [1 ]
Li, He [1 ]
Qin, Senbiao [1 ]
Muliuk, Grigorij [5 ]
Uvin, Sarah [1 ,2 ]
Haq, Bahawal [1 ,3 ]
op de Beeck, Camiel [1 ,4 ]
Goyvaerts, Jeroen [1 ,4 ]
Lepage, Guy [5 ]
Verheyen, Peter [5 ]
Van Campenhout, Joris [5 ]
Morthier, Geert [1 ]
Kuyken, Bart [1 ]
Van Thourhout, Dries [1 ]
Baets, Roel [1 ]
机构
[1] Ghent Univ Imec, Dept Informat Technol, Photon Res Grp, B-9052 Ghent, Belgium
[2] Brolis Sensor Technol, B-9052 Ghent, Belgium
[3] Global Foundries, D-01109 Dresden, Germany
[4] LIGENTEC, EPFL Innovat Pk Batiment L, CH-1024 Ecublens, Switzerland
[5] Imec, B-3001 Heverlee, Belgium
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Silicon; Photonics; Printing; Optical waveguides; Integrated optics; Substrates; III-V semiconductor materials; Integrated optoelectronics; photodiodes; printing; semiconductor lasers; silicon on insulator technology; wafer-scale integration; waveguide components; SILICON; PHOTODIODES; EFFICIENT;
D O I
10.1109/JSTQE.2022.3222686
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Silicon photonics (SiPh) is a disruptive technology in the field of integrated photonics and has experienced rapid development over the past two decades. Various high-performance Si and Ge/Si-based components have been developed on this platform that allow for complex photonic integrated circuits (PICs) with small footprint. These PICs have found use in a wide range of applications. Nevertheless, some non-native functions are still desired, despite the versatility of Si, to improve the overall performance of Si PICs and at the same time cut the cost of the eventual Si photonic system-on-chip. Heterogeneous integration is verified as an effective solution to address this issue, e.g. through die-wafer-bonding and flip-chip. In this paper, we discuss another technology, micro-transfer printing, for the integration of non-native material films/opto-electronic components on SiPh-based platforms. This technology allows for efficient use of non-native materials and enables the (co-)integration of a wide range of materials/devices on wafer scale in a massively parallel way. In this paper we review some of the recent developments in the integration of non-native optical functions on Si photonic platforms using micro-transfer printing.
引用
收藏
页数:14
相关论文
共 44 条
  • [11] Micro-Transfer-Printed III-V-on-Silicon C-Band Semiconductor Optical Amplifiers
    Haq, Bahawal
    Kumari, Sulakshna
    Van Gasse, Kasper
    Zhang, Jing
    Gocalinska, Agnieszka
    Pelucchi, Emanuele
    Corbett, Brian
    Roelkens, Gunther
    [J]. LASER & PHOTONICS REVIEWS, 2020, 14 (07)
  • [12] High-pulse-energy III-V-on-silicon-nitride mode-locked laser
    Hermans, Artur
    Van Gasse, Kasper
    Kjellman, Jon O.
    Caer, Charles
    Nakamura, Tasuku
    Inada, Yasuhisa
    Hisada, Kazuya
    Hirasawa, Taku
    Cuyvers, Stijn
    Kumari, Sulakshna
    Marinins, Aleksandrs
    Jansen, Roelof
    Roelkens, Gunther
    Soussan, Philippe
    Rottenberg, Xavier
    Kuyken, Bart
    [J]. APL PHOTONICS, 2021, 6 (09)
  • [13] Nonlinear properties of lead zirconate-titanate piezoceramics
    Jiang, WH
    Cao, WW
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 88 (11) : 6684 - 6689
  • [14] Transfer-printed single-photon sources coupled to wire waveguides
    Katsumi, Ryota
    Ota, Yasutomo
    Kakuda, Masahiro
    Iwamoto, Satoshi
    Arakawa, Yasuhiko
    [J]. OPTICA, 2018, 5 (06): : 691 - 694
  • [15] Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate
    Keyvaninia, S.
    Muneeb, M.
    Stankovic, S.
    Van Veldhoven, P. J.
    Van Thourhout, D.
    Roelkens, G.
    [J]. OPTICAL MATERIALS EXPRESS, 2013, 3 (01): : 35 - 46
  • [16] InAsP/AlGaInP/GaAs QD laser operating at ∼770 nm
    Krysa, A. B.
    Roberts, J. S.
    Devenson, J.
    Beanland, R.
    Karomi, I.
    Shutts, S.
    Smowton, P. M.
    [J]. V INTERNATIONAL SYMPOSIUM ON COHERENT OPTICAL RADIATION OF SEMICONDUCTOR COMPOUNDS AND STRUCTURES, 2016, 740
  • [17] Ledentsov N., 2020, OPTICAL FIBER COMMUN, pM2A
  • [18] Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips
    Lima, Renato S.
    Leao, Paulo A. G. C.
    Piazzetta, Maria H. O.
    Monteiro, Alessandra M.
    Shiroma, Leandro Y.
    Gobbi, Angelo L.
    Carrilho, Emanuel
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [19] Efficient, tunable flip-chip-integrated III-V/Si hybrid external-cavity laser array
    Lin, Shiyun
    Zheng, Xuezhe
    Yao, Jin
    Djordjevic, Stevan S.
    Cunningham, John E.
    Lee, Jin-Hyoung
    Shubin, Ivan
    Luo, Ying
    Bovington, Jock
    Lee, Daniel Y.
    Thacker, Hiren D.
    Raj, Kannan
    Krishnamoorthy, Ashok V.
    [J]. OPTICS EXPRESS, 2016, 24 (19): : 21454 - 21462
  • [20] High -throughput multiple dies-to-wafer bonding technology and IIIN-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits
    Luo, Xianshu
    Cao, Yulian
    Song, Junfeng
    Hu, Xiaonan
    Chen, Yuanbing
    Li, Chengming
    Liu, Chongyang
    Liow, Tsung-Yang
    Yu, Mingbin
    Hong Wang
    Wang, Qi Jie
    Lo, Patrick Guo-Qiang
    [J]. FRONTIERS IN MATERIALS, 2015, 2