SiamRAAN: Siamese Residual Attentional Aggregation Network for Visual Object Tracking

被引:6
|
作者
Xin, Zhiyi [1 ]
Yu, Junyang [1 ]
He, Xin [1 ]
Song, Yalin [1 ]
Li, Han [1 ]
机构
[1] Henan Univ, Sch Software, Kaifeng 475000, Peoples R China
关键词
Object tracking; Siamese network; Attentional aggregation network; Multilevel feature fusion;
D O I
10.1007/s11063-024-11556-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Siamese network-based tracker calculates object templates and search images independently, and the template features are not updated online when performing object tracking. Adapting to interference scenarios with performance-guaranteed tracking accuracy when background clutter, illumination variation or partial occlusion occurs in the search area is a challenging task. To effectively address the issue with the abovementioned interference and to improve location accuracy, this paper devises a Siamese residual attentional aggregation network framework for self-adaptive feature implicit updating. First, SiamRAAN introduces Self-RAAN into the backbone network by applying residual self-attention to extract effective objective features. Then, we introduce Cross-RAAN to update the template features online by focusing on the high-relevance parts in the feature extraction process of both the object template and search image. Finally, a multilevel feature fusion module is introduced to fuse the RAAN-enhanced feature information and improve the network's ability to perceive key features. Extensive experiments conducted on benchmark datasets (GOT-10K, LaSOT, OTB-50, OTB-100 and UAV123) demonstrated that our SiamRAAN delivers excellent performance and runs at 51 FPS in various challenging object tracking tasks. Code is available at https://github.com/MallowYi/SiamRAAN.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Target-Cognisant Siamese Network for Robust Visual Object Tracking
    Jiang, Yingjie
    Song, Xiaoning
    Xu, Tianyang
    Feng, Zhenhua
    Wu, Xiaojun
    Kittler, Josef
    Pattern Recognition Letters, 2022, 163 : 129 - 135
  • [32] Target-Cognisant Siamese Network for Robust Visual Object Tracking *
    Jiang, Yingjie
    Song, Xiaoning
    Xu, Tianyang
    Feng, Zhenhua
    Wu, Xiaojun
    Kittler, Josef
    PATTERN RECOGNITION LETTERS, 2022, 163 : 129 - 135
  • [33] Learning saliency-awareness Siamese network for visual object tracking
    Yang, Peng
    Wang, Qinghui
    Dou, Jie
    Dou, Lei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 103
  • [34] IOU - SIAMTRACK: IOU GUIDED SIAMESE NETWORK FOR VISUAL OBJECT TRACKING
    Dasari, Mohana Murali
    Gorthi, Rama Krishna Sai Subrahmanyam
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2061 - 2065
  • [35] Attention aggregation siamese network with anchor free scheme for UAV object tracking
    Wang H.-J.
    Ma W.-L.
    Zhang S.-Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (10): : 1945 - 1954
  • [36] Siamese adversarial network for object tracking
    Kim, H. -I.
    Park, R. -H.
    ELECTRONICS LETTERS, 2019, 55 (02) : 88 - +
  • [37] Siamese Visual Tracking With Residual Fusion Learning
    Sun, Xinglong
    Han, Guangliang
    Guo, Lihong
    IEEE ACCESS, 2022, 10 : 88421 - 88433
  • [38] Criss-Cross Attentional Siamese Networks for Object Tracking
    Wang, Zhangdong
    Qin, Jiaohua
    Xiang, Xuyu
    Tan, Yun
    Xiong, Neal N.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 2931 - 2946
  • [39] SiamAPN plus plus : Siamese Attentional Aggregation Network for Real-Time UAV Tracking
    Cao, Ziang
    Fu, Changhong
    Ye, Junjie
    Li, Bowen
    Li, Yiming
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 3086 - 3092
  • [40] SiamADT: Siamese Attention and Deformable Features Fusion Network for Visual Object Tracking
    Wang, Fasheng
    Cao, Ping
    Wang, Xing
    He, Bing
    Sun, Fuming
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 7933 - 7950