SiamRAAN: Siamese Residual Attentional Aggregation Network for Visual Object Tracking

被引:6
|
作者
Xin, Zhiyi [1 ]
Yu, Junyang [1 ]
He, Xin [1 ]
Song, Yalin [1 ]
Li, Han [1 ]
机构
[1] Henan Univ, Sch Software, Kaifeng 475000, Peoples R China
关键词
Object tracking; Siamese network; Attentional aggregation network; Multilevel feature fusion;
D O I
10.1007/s11063-024-11556-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Siamese network-based tracker calculates object templates and search images independently, and the template features are not updated online when performing object tracking. Adapting to interference scenarios with performance-guaranteed tracking accuracy when background clutter, illumination variation or partial occlusion occurs in the search area is a challenging task. To effectively address the issue with the abovementioned interference and to improve location accuracy, this paper devises a Siamese residual attentional aggregation network framework for self-adaptive feature implicit updating. First, SiamRAAN introduces Self-RAAN into the backbone network by applying residual self-attention to extract effective objective features. Then, we introduce Cross-RAAN to update the template features online by focusing on the high-relevance parts in the feature extraction process of both the object template and search image. Finally, a multilevel feature fusion module is introduced to fuse the RAAN-enhanced feature information and improve the network's ability to perceive key features. Extensive experiments conducted on benchmark datasets (GOT-10K, LaSOT, OTB-50, OTB-100 and UAV123) demonstrated that our SiamRAAN delivers excellent performance and runs at 51 FPS in various challenging object tracking tasks. Code is available at https://github.com/MallowYi/SiamRAAN.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] SiamRAAN: Siamese Residual Attentional Aggregation Network for Visual Object Tracking
    Zhiyi Xin
    Junyang Yu
    Xin He
    Yalin Song
    Han Li
    Neural Processing Letters, 56
  • [2] Siamese Attentional Cascade Keypoints Network for Visual Object Tracking
    Wang, Ershen
    Wang, Donglei
    Huang, Yufeng
    Tong, Gang
    Xu, Song
    Pang, Tao
    IEEE ACCESS, 2021, 9 : 7243 - 7254
  • [3] Template Attentional Siamese Network for Object Tracking
    Gao, Junyan
    Yang, Zhenguo
    Liu, Wenyin
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2018), 2018, : 218 - 221
  • [4] Dual Attentional Siamese Network for Visual Tracking
    Zhang Xiaowei
    Ma Jianwei
    Liu Hong
    Hu Hai-Miao
    Yang Peng
    DISPLAYS, 2022, 74
  • [5] Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking
    Wang, Qiang
    Teng, Zhu
    Xing, Junliang
    Gao, Jin
    Hu, Weiming
    Maybank, Stephen
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4854 - 4863
  • [6] Siamese residual network for efficient visual tracking
    Fan, Nana
    Liu, Qiao
    Li, Xin
    Zhou, Zikun
    He, Zhenyu
    INFORMATION SCIENCES, 2023, 624 : 606 - 623
  • [7] Siamese Feedback Network for Visual Object Tracking
    Gwon M.-G.
    Kim J.
    Um G.-M.
    Lee H.
    Seo J.
    Lim S.Y.
    Yang S.-J.
    Kim W.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (01): : 24 - 33
  • [8] Online Siamese Network for Visual Object Tracking
    Chang, Shuo
    Li, Wei
    Zhang, Yifan
    Feng, Zhiyong
    SENSORS, 2019, 19 (08)
  • [9] Siamese Dual Path Aggregation Network for Object Tracking
    Tian, Yijun
    Du, Huiqian
    Ma, Zhifeng
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [10] Siamese attentional keypoint network for high performance visual tracking
    Gao, Peng
    Yuan, Ruyue
    Wang, Fei
    Xiao, Liyi
    Fujita, Hamido
    Zhang, Yan
    KNOWLEDGE-BASED SYSTEMS, 2020, 193