Ocular microvascular complications in diabetic retinopathy: insights from machine learning

被引:12
|
作者
Ahmed, Thiara S. [1 ,2 ]
Shah, Janika [1 ]
Zhen, Yvonne N. B. [1 ,2 ]
Chua, Jacqueline [1 ,3 ]
Wong, Damon W. K. [1 ,2 ,3 ]
Nusinovici, Simon [1 ,3 ]
Tan, Rose [1 ]
Tan, Gavin [1 ,3 ]
Schmetterer, Leopold [1 ,3 ,4 ,5 ,6 ,7 ]
Tan, Bingyao [1 ,2 ,4 ]
机构
[1] Singapore Eye Res Inst, Singapore, Singapore
[2] SERI NTU Adv Ocular Engn STANCE Program, Singapore, Singapore
[3] Duke NUS Med Sch, Acad Clin Program, Singapore, Singapore
[4] Nanyang Technol Univ, Chem Chem Engn & Biotechnol, Singapore, Singapore
[5] Med Univ Vienna, Dept Clin Pharmacol, Vienna, Austria
[6] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[7] Inst Mol & Clin Ophthalmol Basel, Basel, Switzerland
基金
新加坡国家研究基金会; 英国医学研究理事会;
关键词
diabetic retinopathy; FOVEAL AVASCULAR ZONE; BLOOD-PRESSURE; MOUSE MODEL; FLOW;
D O I
10.1136/bmjdrc-2023-003758
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionDiabetic retinopathy (DR) is a leading cause of preventable blindness among working-age adults, primarily driven by ocular microvascular complications from chronic hyperglycemia. Comprehending the complex relationship between microvascular changes in the eye and disease progression poses challenges, traditional methods assuming linear or logistical relationships may not adequately capture the intricate interactions between these changes and disease advances. Hence, the aim of this study was to evaluate the microvascular involvement of diabetes mellitus (DM) and non-proliferative DR with the implementation of non-parametric machine learning methods.Research design and methodsWe conducted a retrospective cohort study that included optical coherence tomography angiography (OCTA) images collected from a healthy group (196 eyes), a DM no DR group (120 eyes), a mild DR group (71 eyes), and a moderate DR group (66 eyes). We implemented a non-parametric machine learning method for four classification tasks that used parameters extracted from the OCTA images as predictors: DM no DR versus healthy, mild DR versus DM no DR, moderate DR versus mild DR, and any DR versus no DR. SHapley Additive exPlanations values were used to determine the importance of these parameters in the classification.ResultsWe found large choriocapillaris flow deficits were the most important for healthy versus DM no DR, and became less important in eyes with mild or moderate DR. The superficial microvasculature was important for the healthy versus DM no DR and mild DR versus moderate DR tasks, but not for the DM no DR versus mild DR task-the stage when deep microvasculature plays an important role. Foveal avascular zone metric was in general less affected, but its involvement increased with worsening DR.ConclusionsThe findings from this study provide valuable insights into the microvascular involvement of DM and DR, facilitating the development of early detection methods and intervention strategies.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Diabetic retinopathy - ocular complications of diabetes mellitus
    Nentwich, Martin M.
    Ulbig, Michael W.
    WORLD JOURNAL OF DIABETES, 2015, 6 (03) : 489 - 499
  • [2] Machine Learning Identification of Diabetic Retinopathy from Fundus Images
    Gurudath, Nikita
    Celenk, Mehmet
    Riley, H. Bryan
    2014 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2014,
  • [3] Machine Learning and AI Approaches for Analyzing Diabetic and Hypertensive Retinopathy in Ocular Images: A Literature Review
    Urina-Triana, Miguel Alberto
    Pineres-Melo, Marlon Alberto
    Mantilla-Morron, Mirary
    Butt-Aziz, Shariq
    Galeano-Munoz, Luisa
    Naz, Sumera
    Ariza-Colpas, Paola Patricia
    IEEE ACCESS, 2024, 12 : 54590 - 54607
  • [4] Adaptive machine learning classification for diabetic retinopathy
    Laxmi Math
    Ruksar Fatima
    Multimedia Tools and Applications, 2021, 80 : 5173 - 5186
  • [5] Application of Machine Learning Algorithms on Diabetic Retinopathy
    Pal, Ridam
    Poray, Jayanta
    Sen, Mainak
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 2046 - 2051
  • [6] Adaptive machine learning classification for diabetic retinopathy
    Math, Laxmi
    Fatima, Ruksar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (04) : 5173 - 5186
  • [7] Prognostication of Diabetic Retinopathy Using Machine Learning
    Hema, M.
    Shankar, K. C. Prabu
    Baskar, M.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (04) : 854 - 870
  • [8] Microvascular Modifications in Diabetic Retinopathy
    Jennifer T. Durham
    Ira M. Herman
    Current Diabetes Reports, 2011, 11 : 253 - 264
  • [9] Microvascular Modifications in Diabetic Retinopathy
    Durham, Jennifer T.
    Herman, Ira M.
    CURRENT DIABETES REPORTS, 2011, 11 (04) : 253 - 264
  • [10] A Robust Machine Learning Model for Diabetic Retinopathy Classification
    Tabacaru, Gigi
    Moldovanu, Simona
    Raducan, Elena
    Barbu, Marian
    JOURNAL OF IMAGING, 2024, 10 (01)