Achiral Magnetic Photonic Antenna as a Tunable Nanosource of Chiral Light

被引:0
作者
Cui, Lingfei [1 ]
Yang, Xingyu [1 ]
Reynier, Benoit [1 ]
Schwob, Catherine [1 ]
Bidault, Sebastien [2 ]
Gallas, Bruno [1 ]
Mivelle, Mathieu [1 ]
机构
[1] Sorbonne Univ, Inst Nanosci Paris, CNRS, INSP, F-75005 Paris, France
[2] Univ PSL, Inst Langevin, ESPCI Paris, CNRS, F-75005 Paris, France
关键词
magnetic dipole nanoantenna; superchiral light; plasmonics; nanophotonics; achiral nanostructures; CIRCULAR-DICHROISM; OPTICAL-FIELDS; NANOSTRUCTURES; SLIT;
D O I
10.1021/acsphotonics.3c00281
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sensitivity to molecular chirality is crucial for many fields, from biology and chemistry to the pharmaceutical industry. By generating superchiral light, nanophotonics has brought innovative solutions to reduce the detection volume and increase sensitivity at the cost of a nonselectivity of light chirality or a strong contribution to the background. Here, we theoretically propose a simple achiral plasmonic resonator based on a rectangular nanoslit in a thin metallic layer behaving as a magnetic dipole to generate a tunable nanosource of purely chiral light working from the UV to the infrared. This nanosource is free of any background, and the sign of its chirality is externally tunable in wavelength and polarization. These unique properties, resulting from the coupling between the incident wave and the magnetic dipolar character of our nanoantenna, coupled with a method of Fluorescent Detected Circular Dichroism (FDCD), shown to be 2 orders of magnitude more sensitive than classical circular dichroism measurements, thus provide a platform with deep subwavelength detection volumes for chiral molecules and a roadmap for optimizing the signal-to-noise ratios in circular dichroism measurements to reach single-molecule sensitivity.
引用
收藏
页码:3850 / 3857
页数:8
相关论文
共 53 条
[41]   Conditions for Enhancing Chiral Nanophotonics near Achiral Nanoparticles [J].
Raziman, T. V. ;
Godiksen, Rasmus H. ;
Mueller, Moos A. ;
Curto, Alberto G. .
ACS PHOTONICS, 2019, 6 (10) :2583-+
[42]   Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration [J].
Schaeferling, Martin ;
Engheta, Nader ;
Giessen, Harald ;
Weiss, Thomas .
ACS PHOTONICS, 2016, 3 (06) :1076-1084
[43]   Formation of chiral fields in a symmetric environment [J].
Schaeferling, Martin ;
Yin, Xinghui ;
Giessen, Harald .
OPTICS EXPRESS, 2012, 20 (24) :26326-26336
[44]   Vectorial Nanoscale Mapping of Optical Antenna Fields by Single Molecule Dipoles [J].
Singh, Anshuman ;
Calbris, Gaetan ;
van Hulst, Niek F. .
NANO LETTERS, 2014, 14 (08) :4715-4723
[45]   Plasmonic Circular Dichroism of Peptide-Functionalized Gold Nanoparticles [J].
Slocik, Joseph M. ;
Govorov, Alexander O. ;
Naik, Rajesh R. .
NANO LETTERS, 2011, 11 (02) :701-705
[46]   Fluorescence-Detected Circular Dichroism of a Chiral Molecular Monolayer with Dielectric Metasurfaces [J].
Solomon, Michelle L. ;
Abendroth, John M. ;
Poulikakos, Lisa, V ;
Hu, Jack ;
Dionne, Jennifer A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (43) :18304-18309
[47]   Optical Biosensors Based on Plasmonic Nanostructures: A Review [J].
Spackova, Barbora ;
Wrobel, Piotr ;
Bockova, Marketa ;
Homola, Jiri .
PROCEEDINGS OF THE IEEE, 2016, 104 (12) :2380-2408
[48]   Optical Chirality and Its Interaction with Matter [J].
Tang, Yiqiao ;
Cohen, Adam E. .
PHYSICAL REVIEW LETTERS, 2010, 104 (16)
[49]   A Novel Chiral Metasurface with Controllable Circular Dichroism Induced by Coupling Localized and Propagating Modes [J].
Wang, Zeng ;
Wang, Yue ;
Adamo, Giorgio ;
Teh, Bing Hong ;
Wu, Qing Yang Steve ;
Teng, Jinghua ;
Sun, Handong .
ADVANCED OPTICAL MATERIALS, 2016, 4 (06) :883-888
[50]   Near-infrared chirality of plasmonic metasurfaces with gold rectangular holes [J].
Wu, Biyuan ;
Wang, Mingjun ;
Sun, Yasong ;
Wu, Feng ;
Shi, Zhangxing ;
Wu, Xiaohu .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (03) :2527-2535