Achiral Magnetic Photonic Antenna as a Tunable Nanosource of Chiral Light

被引:0
作者
Cui, Lingfei [1 ]
Yang, Xingyu [1 ]
Reynier, Benoit [1 ]
Schwob, Catherine [1 ]
Bidault, Sebastien [2 ]
Gallas, Bruno [1 ]
Mivelle, Mathieu [1 ]
机构
[1] Sorbonne Univ, Inst Nanosci Paris, CNRS, INSP, F-75005 Paris, France
[2] Univ PSL, Inst Langevin, ESPCI Paris, CNRS, F-75005 Paris, France
关键词
magnetic dipole nanoantenna; superchiral light; plasmonics; nanophotonics; achiral nanostructures; CIRCULAR-DICHROISM; OPTICAL-FIELDS; NANOSTRUCTURES; SLIT;
D O I
10.1021/acsphotonics.3c00281
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sensitivity to molecular chirality is crucial for many fields, from biology and chemistry to the pharmaceutical industry. By generating superchiral light, nanophotonics has brought innovative solutions to reduce the detection volume and increase sensitivity at the cost of a nonselectivity of light chirality or a strong contribution to the background. Here, we theoretically propose a simple achiral plasmonic resonator based on a rectangular nanoslit in a thin metallic layer behaving as a magnetic dipole to generate a tunable nanosource of purely chiral light working from the UV to the infrared. This nanosource is free of any background, and the sign of its chirality is externally tunable in wavelength and polarization. These unique properties, resulting from the coupling between the incident wave and the magnetic dipolar character of our nanoantenna, coupled with a method of Fluorescent Detected Circular Dichroism (FDCD), shown to be 2 orders of magnitude more sensitive than classical circular dichroism measurements, thus provide a platform with deep subwavelength detection volumes for chiral molecules and a roadmap for optimizing the signal-to-noise ratios in circular dichroism measurements to reach single-molecule sensitivity.
引用
收藏
页码:3850 / 3857
页数:8
相关论文
共 53 条
  • [1] Induced Chirality through Electromagnetic Coupling between Chiral Molecular Layers and Plasmonic Nanostructures
    Abdulrahman, Nadia A.
    Fan, Z.
    Tonooka, Taishi
    Kelly, Sharon M.
    Gadegaard, Nikolaj
    Hendry, Euan
    Govorov, Alexander O.
    Kadodwala, Malcolm
    [J]. NANO LETTERS, 2012, 12 (02) : 977 - 983
  • [2] Chiral nanohole arrays
    Ai, Bin
    Luong, Hoang M.
    Zhao, Yiping
    [J]. NANOSCALE, 2020, 12 (04) : 2479 - 2491
  • [3] Plasmonically Enhanced Chiral Optical Fields and Forces in Achiral Split Ring Resonators
    Aizadeh, M. H.
    Reinhard, Bjoern M.
    [J]. ACS PHOTONICS, 2015, 2 (03): : 361 - 368
  • [4] Characterizing optical chirality
    Bliokh, Konstantin Y.
    Nori, Franco
    [J]. PHYSICAL REVIEW A, 2011, 83 (02)
  • [5] Nanophotonic Chiral Sensing: How Does It Actually Work?
    Both, Steffen
    Schaeferling, Martin
    Sterl, Florian
    Muljarov, Egor A.
    Giessen, Harald
    Weiss, Thomas
    [J]. ACS NANO, 2022, 16 (02) : 2822 - 2832
  • [6] Chirality and angular momentum in optical radiation
    Coles, Matt M.
    Andrews, David L.
    [J]. PHYSICAL REVIEW A, 2012, 85 (06):
  • [7] Curto A. G., 2014, OPTICAL ANTENNAS CON
  • [8] Davies N.M., 2003, ADV PHARMACOL, V1, P242
  • [9] Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures
    Davis, T. J.
    Hendry, E.
    [J]. PHYSICAL REVIEW B, 2013, 87 (08)
  • [10] Optical transmission properties of a single subwavelength aperture in a real metal
    Degiron, A
    Lezec, HJ
    Yamamoto, N
    Ebbesen, TW
    [J]. OPTICS COMMUNICATIONS, 2004, 239 (1-3) : 61 - 66