Anyons;
Discrete Symmetries;
Topological Field Theories;
QUANTUM-FIELD THEORY;
SYMMETRIES;
FRACTONS;
D O I:
10.1007/JHEP11(2023)206
中图分类号:
O412 [相对论、场论];
O572.2 [粒子物理学];
学科分类号:
摘要:
Given a two-dimensional bosonic theory with a non-anomalous Z(2) symmetry, the orbifolding and fermionization can be understood holographically using three-dimensional BF theory with level 2. From a Hamiltonian perspective, the information of dualities is encoded in a topological boundary state which is defined as an eigenstate of certain Wilson loop operators (anyons) in the bulk. We generalize this story to two-dimensional theories with non-anomalous Z(N) symmetry, focusing on parafermionization. We find the generic operators defining different topological boundary states including orbifolding and parafermionization with Z(N) or subgroups of Z(N), and discuss their algebraic properties as well as the Z(N) duality web.
机构:
Homi Bhabha Natl Inst, Inst Math Sci, 4 Cross Rd,CIT Campus, Chennai 600113, Tamil Nadu, IndiaHomi Bhabha Natl Inst, Inst Math Sci, 4 Cross Rd,CIT Campus, Chennai 600113, Tamil Nadu, India
Ashok, Sujay K.
Troost, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Normale Super, Phys Theor Lab, 24 Rue Lhomond, Paris, FranceHomi Bhabha Natl Inst, Inst Math Sci, 4 Cross Rd,CIT Campus, Chennai 600113, Tamil Nadu, India
机构:
Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, GermanyMax Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany
Godazgar, Hadi
Godazgar, Mahdi
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, GermanyMax Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany