ZN duality and parafermions revisited

被引:7
|
作者
Duan, Zhihao [1 ]
Jia, Qiang [1 ]
Lee, Sungjay [1 ]
机构
[1] Korea Inst Adv Study, Sch Phys, Hoegi Ro 85, Seoul, South Korea
关键词
Anyons; Discrete Symmetries; Topological Field Theories; QUANTUM-FIELD THEORY; SYMMETRIES; FRACTONS;
D O I
10.1007/JHEP11(2023)206
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Given a two-dimensional bosonic theory with a non-anomalous Z(2) symmetry, the orbifolding and fermionization can be understood holographically using three-dimensional BF theory with level 2. From a Hamiltonian perspective, the information of dualities is encoded in a topological boundary state which is defined as an eigenstate of certain Wilson loop operators (anyons) in the bulk. We generalize this story to two-dimensional theories with non-anomalous Z(N) symmetry, focusing on parafermionization. We find the generic operators defining different topological boundary states including orbifolding and parafermionization with Z(N) or subgroups of Z(N), and discuss their algebraic properties as well as the Z(N) duality web.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] ℤN duality and parafermions revisited
    Zhihao Duan
    Qiang Jia
    Sungjay Lee
    Journal of High Energy Physics, 2023
  • [2] Membrane duality revisited
    Duff, M. J.
    Lu, J. X.
    Percacci, R.
    Pope, C. N.
    Samtleben, H.
    Sezgin, E.
    NUCLEAR PHYSICS B, 2015, 901 : 1 - 21
  • [3] T-duality constraints on higher derivatives revisited
    Hohm, Olaf
    Zwiebach, Barton
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [4] Nonstandard parafermions and string compactification
    Babichenko, Andrei
    Gepner, Doron
    NUCLEAR PHYSICS B, 2012, 854 (02) : 375 - 392
  • [5] Topological Phases with Parafermions: Theory and Blueprints
    Alicea, Jason
    Fendley, Paul
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 7, 2016, 7 : 119 - 139
  • [6] Parafermions in hierarchical fractional quantum Hall states
    Santos, Luiz H.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [7] Universal quantum computing with parafermions assisted by a half-fluxon
    Dua, Arpit
    Malomed, Boris
    Cheng, Meng
    Jiang, Liang
    PHYSICAL REVIEW B, 2019, 100 (14)
  • [8] Topological Phases of Parafermions: A Model with Exactly Solvable Ground States
    Iemini, Fernando
    Mora, Christophe
    Mazza, Leonardo
    PHYSICAL REVIEW LETTERS, 2017, 118 (17)
  • [9] Nontopological parafermions in a one-dimensional fermionic model with even multiplet pairing
    Mazza, Leonardo
    Iemini, Fernando
    Dalmonte, Marcello
    Mora, Christophe
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [10] From Koszul duality to Poincaré duality
    MICHEL DUBOIS-VIOLETTE
    Pramana, 2012, 78 : 947 - 961