Enhancement and external validation of algorithms using diagnosis codes to identify invasive Escherichia coli disease

被引:1
作者
Hernandez-Pastor, Luis [1 ]
Geurtsen, Jeroen [2 ]
El Khoury, Antoine C. [3 ]
Fortin, Stephen P. [4 ]
Gauthier-Loiselle, Marjolaine [5 ,6 ]
Yu, Louise H. [5 ]
Cloutier, Martin [5 ]
机构
[1] Janssen Pharmaceut NV, Beerse, Belgium
[2] Janssen Vaccines & Prevent BV, Leiden, Netherlands
[3] Janssen Global Serv LLC, Raritan, NJ USA
[4] Janssen Res & Dev LLC, Raritan, NJ USA
[5] Anal Grp Inc, Montreal, PQ, Canada
[6] Anal Grp Inc, 1190 Ave Canadiens De Montreal,Tour Deloitte,Suite, Montreal, PQ H3B 0M7, Canada
关键词
Escherichia coli; invasive E. coli disease; sepsis; diagnosis codes; electronic health record database; SEPSIS; TRENDS;
D O I
10.1080/03007995.2023.2247968
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: To assess the predictive accuracy of code-based algorithms for identifying invasive Escherichia coli (E. coli) disease (IED) among inpatient encounters in US hospitals.Methods: The PINC AI Healthcare Database (10/01/2015-03/31/2020) was used to assess the performance of six published code-based algorithms to identify IED cases among inpatient encounters. Case-confirmed IEDs were identified based on microbiological confirmation of E. coli in a normally sterile body site (Group 1) or in urine with signs of sepsis (Group 2). Code-based algorithm performance was assessed overall, and separately for Group 1 and Group 2 based on sensitivity, specificity, positive and negative predictive value (PPV and NPV) and F1 score. The improvement in performance of refinements to the best-performing algorithm was also assessed.Results: Among 2,595,983 encounters, 97,453 (3.8%) were case-confirmed IED (Group 1: 60.9%; Group 2: 39.1%). Across algorithms, specificity and NPV were excellent (>97%) for all but one algorithm, but there was a trade-off between sensitivity and PPV. The algorithm with the most balanced performance characteristics included diagnosis codes for: (1) infectious disease due to E. coli OR (2) sepsis/bacteremia/organ dysfunction combined with unspecified E. coli infection and no other concomitant non-E. coli invasive disease (sensitivity: 56.9%; PPV: 56.4%). Across subgroups, the algorithms achieved lower algorithm performance for Group 2 (sensitivity: 9.9%-61.1%; PPV: 3.8%-16.0%).Conclusions: This study assessed code-based algorithms to identify IED during inpatient encounters in a large US hospital database. Such algorithms could be useful to identify IED in healthcare databases that lack information on microbiology data.
引用
收藏
页码:1303 / 1312
页数:10
相关论文
共 44 条
[1]   Development and performance characteristics of novel code-based algorithms to identify invasive Escherichia coli disease [J].
Fortin, Stephen P. ;
Pastor, Luis Hernandez ;
Doua, Joachim ;
Sarnecki, Michal ;
Swerdel, Joel ;
Colasurdo, Jamie ;
Geurtsen, Jeroen .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 (09) :983-991
[2]   Unbiased identification of risk factors for invasive Escherichia coli disease using machine learning [J].
Clarke, Erik ;
Chehoud, Christel ;
Khan, Najat ;
Spiessens, Bart ;
Poolman, Jan ;
Geurtsen, Jeroen .
BMC INFECTIOUS DISEASES, 2024, 24 (01)
[3]   Epidemiology, Clinical Features, and Antimicrobial Resistance of Invasive Escherichia Coli Disease in Patients Admitted in Tertiary Care Hospitals [J].
Doua, Joachim ;
Geurtsen, Jeroen ;
Rodriguez-Bano, Jesus ;
Cornely, Oliver A. ;
Go, Oscar ;
Gomila-Grange, Aina ;
Kirby, Andrew ;
Hermans, Peter ;
Gori, Andrea ;
Zuccaro, Valentina ;
Gravenstein, Stefan ;
Bonten, Marc ;
Poolman, Jan ;
Sarnecki, Michal .
OPEN FORUM INFECTIOUS DISEASES, 2023, 10 (02)
[4]   Economic and Disease Burden Associated with Invasive Escherichia coli Disease in the United States [J].
Schmidt, Mark A. ;
Blum, Maxim ;
Donald, Judy L. ;
Meenan, Richard T. ;
Carrio, Elvira ;
Poolman, Jan ;
Neary, Maureen P. ;
Verstraeten, Thomas ;
Geurtsen, Jeroen .
INFECTIOUS DISEASES AND THERAPY, 2025, 14 (03) :569-586
[5]   Invasive Escherichia coli are a feature of Crohn's disease [J].
Sasaki, Maiko ;
Sitaraman, Shanti V. ;
Babbin, Brian A. ;
Gerner-Smidt, Peter ;
Ribot, Efrain M. ;
Garrett, Nancy ;
Alpern, Joel A. ;
Akyildiz, Adil ;
Theiss, Arianne L. ;
Nusrat, Asma ;
Klapproth, Jan-Michael A. .
LABORATORY INVESTIGATION, 2007, 87 (10) :1042-1054
[6]   Epidemiology of invasive Escherichia coli disease in adults in England, 2013-2017 [J].
Blum, Maxim ;
Geurtsen, Jeroen ;
Herweijer, Eva ;
Sarnecki, Michal ;
Spiessens, Bart ;
Diogo, Gil Reynolds ;
Hermans, Peter ;
Thelwall, Simon ;
Bhattacharya, Alex ;
Verstraeten, Thomas ;
Poolman, Jan ;
Hope, Russell .
EPIDEMIOLOGY & INFECTION, 2025, 153
[7]   Clinical burden of invasive Escherichia coli disease among older adult patients treated in hospitals in the United States [J].
Hernandez-Pastor, Luis ;
Geurtsen, Jeroen ;
Baugh, Bryan ;
El Khoury, Antoine C. ;
Kalu, Nnanya ;
Gauthier-Loiselle, Marjolaine ;
Bungay, Rebecca ;
Cloutier, Martin ;
Sarnecki, Michal ;
Saade, Elie .
BMC INFECTIOUS DISEASES, 2023, 23 (01)
[8]   Economic burden of invasive Escherichia coli disease among older adult patients treated in hospitals in the United States [J].
Hernandez-Pastor, Luis ;
Geurtsen, Jeroen ;
Baugh, Bryan ;
Khoury, Antoine C. El ;
Kalu, Nnanya ;
Krishnarajah, Girishanthy ;
Gauthier-Loiselle, Marjolaine ;
Bungay, Rebecca ;
Cloutier, Martin ;
Saade, Elie .
JOURNAL OF MANAGED CARE & SPECIALTY PHARMACY, 2023, 29 (08) :873-883
[9]   Development and external validation of tools for categorizing diagnosis codes in international hospital data [J].
Malecki, Sarah L. ;
Loffler, Anne ;
Tamming, Daniel ;
Johansen, Niklas Dyrby ;
Biering-Sorensen, Tor ;
Fralick, Michael ;
Sohail, Shahmir ;
Shi, Jessica ;
Roberts, Surain B. ;
Colacci, Michael ;
Ismail, Marwa ;
Razak, Fahad ;
Verma, Amol A. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 189
[10]   Derivation and external validation of risk stratification models for severe maternal morbidity using prenatal encounter diagnosis codes [J].
Clapp, Mark A. ;
McCoy, Thomas H., Jr. ;
James, Kaitlyn E. ;
Kaimal, Anjali J. ;
Perlis, Roy H. .
JOURNAL OF PERINATOLOGY, 2021, 41 (11) :2590-2596