Emerging nanomaterials to enhance electrochemical impedance spectroscopy for biomedical applications

被引:6
|
作者
Chen, Justin [1 ]
Arianpour, Brian [1 ]
Wang, Kaidong [2 ]
Wang, Shaolei [1 ]
Yin, Junyi [1 ]
Zhang, Yaran [1 ]
Zhu, Enbo [2 ]
Hsiai, Tzung K. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Div Cardiol, Los Angeles, CA 90095 USA
关键词
nanomaterials; electrochemical impedance spectroscopy; electrical impedance tomography; wearable devices; implantable materials; METAL-ORGANIC FRAMEWORKS; PI-STACKING INTERACTION; CARBON POLYHEDRA; ARAMID FIBER; DOUBLE-LAYER; GRAPHENE; ELECTRODE; TOMOGRAPHY; BIOSENSOR; SENSORS;
D O I
10.3389/fmats.2023.1146045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Over the last few decades, electrical impedance-based sensors have been investigated for clinical translation to detect changes in tissue conductivities, including cardiac output and pulmonary function. Recently, electrochemical impedance spectroscopy (EIS) provides metabolic measurements that occur at the electrode-tissue interface, and the 3-D EIS can be reconstructed to generate electrical impedance tomography (EIT) for detecting the impedimetric properties of the vascular wall or fatty liver disease. In both EIS and EIT applications, the electrochemical properties of the interface electrodes are essential to address the signal-to-noise ratio or sensitivity of measurements in the biological environment. To enhance the conductive properties, we will survey a series of carbon-based nanomaterials as the emerging candidates for coating the electrodes of bioimpedance sensors. In this review, we will provide a theoretical background on impedance-based measurements and highlight the current state of EIS and EIT, including their applications for cancer screening and detection of vulnerable atherosclerotic plaques. Next, we will focus on the strengths of different nanomaterials when used as an electrode coating to optimize charge transfer across the electric double layers and to enhance measurement sensitivity. We will also identify some unmet clinical needs, such as the ability to adapt to different hemodynamic conditions and blood vessel geometries, that can be realized by the novel biomaterials for the future EIS-based sensors.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Electrochemical impedance spectroscopy
    Wang, Shangshang
    Zhang, Jianbo
    Gharbi, Oumaima
    Vivier, Vincent
    Gao, Ming
    Orazem, Mark E.
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [42] Electrochemical impedance spectroscopy
    Nishikata, Atsushi
    Denki Kagaku, 1998, 66 (05): : 498 - 503
  • [43] Recent advances on bioreceptors and metal nanomaterials-based electrochemical impedance spectroscopy biosensors
    Chen, Zi-Bo
    Jin, Hui-Hui
    Yang, Zhu-Gen
    He, Da-Ping
    RARE METALS, 2023, 42 (04) : 1098 - 1117
  • [44] Electrochemical impedance spectroscopy
    Nishikata, A
    DENKI KAGAKU, 1998, 66 (05): : 498 - 503
  • [45] Electrochemical Impedance Spectroscopy
    Chang, Byoung-Yong
    Park, Su-Moon
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 3, 2010, 3 : 207 - 229
  • [46] Electrochemical impedance spectroscopy
    不详
    Nature Reviews Methods Primers, 1 (1):
  • [47] Electrochemical impedance spectroscopy
    Shangshang Wang
    Jianbo Zhang
    Oumaïma Gharbi
    Vincent Vivier
    Ming Gao
    Mark E. Orazem
    Nature Reviews Methods Primers, 1
  • [48] Electrochemical Impedance Spectroscopy
    Vereecken, Jean
    ELECTROCHEMICAL SOCIETY INTERFACE, 2009, 18 (02): : 19 - 20
  • [49] Emerging Advanced Nanomaterials and their Applications
    Karakoti, Ajay
    Yi, Jiabao
    Vinu, Ajayan
    SMALL, 2020, 16 (12)
  • [50] Nanomaterials-based portable electrochemical sensing and biosensing systems for clinical and biomedical applications
    Maduraiveeran, Govindhan
    JOURNAL OF ANALYTICAL SCIENCE AND TECHNOLOGY, 2022, 13 (01)