Exploring Large Digital Bodies for the Study of Human Behavior

被引:3
作者
Albuquerque, Ulysses Paulino [1 ]
Cantalice, Anibal Silva [1 ]
Oliveira, Edwine Soares [1 ]
de Moura, Joelson Moreno Brito [2 ]
dos Santos, Rayane Karoline Silva [1 ]
da Silva, Risoneide Henriques [1 ]
Brito Jr, Valdir Moura [1 ]
Ferreira Jr, Washington Soares [3 ]
机构
[1] Univ Fed Pernambuco, Dept Bot, Lab Ecol & Evolucao Sistemas Socioecol LEA, Ave Prof Moraes Rego,Cidade Univ, Recife BR-123550670, PE, Brazil
[2] Univ Fed Sul & Sudeste Para, Inst Estudos Xingu IEX, Loteamento Cidade Nova, Ave Norte Sul,Lote N 1,Qd 15,Setor 15, Sao Felix Xingu, Brazil
[3] Univ Pernambuco, Lab Investigacoes Bioculturais Semiarido, Campus Petrolina,BR203,Km 2,S-N, BR-56328903 Petrolina, PE, Brazil
关键词
Big data; Machine learning; Behavioral patterns; Personality traits; Digital media; Social media; BIG-DATA; SOCIAL MEDIA; CULTURAL SALIENCE; GOOGLE; CONSERVATION; INDICATOR; COVID-19; INTERNET; PEOPLE; TIME;
D O I
10.1007/s40806-023-00363-2
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Internet access has become a fundamental component of contemporary society, with major impacts in many areas that offer opportunities for new research insights. The search and deposition of information in digital media form large sets of data known as digital corpora, which can be used to generate structured data, representing repositories of knowledge and evidence of human culture. This information offers opportunities for scientific investigations that contribute to the understanding of human behavior on a large scale, reaching human populations/individuals that would normally be difficult to access. These tools can help access social and cultural varieties worldwide. In this article, we briefly review the potential of these corpora in the study of human behavior. Therefore, we propose Culturomics of Human Behavior as an approach to understand, explain, and predict human behavior using digital corpora.
引用
收藏
页码:385 / 394
页数:10
相关论文
共 107 条
[1]  
Acerbi A., 2020, CULTURAL EVOLUTION D
[2]   Apparent age prediction from faces: A survey of modern approaches [J].
Agbo-Ajala, Olatunbosun ;
Viriri, Serestina ;
Oloko-Oba, Mustapha ;
Ekundayo, Olufisayo ;
Heymann, Reolyn .
FRONTIERS IN BIG DATA, 2022, 5
[3]  
Altay S., 2022, J QUANTITATIVE DESCR, V2, P1, DOI DOI 10.51685/JQD.2022.020
[4]  
[Anonymous], 2022, About Pew Research Center
[5]   Natural Language Processing as a tool to evaluate emotions in conservation conflicts [J].
Arbieu, Ugo ;
Helsper, Kathrin ;
Dadvar, Maral ;
Mueller, Thomas ;
Niamir, Aidin .
BIOLOGICAL CONSERVATION, 2021, 256
[6]   Using Google search data to inform global climate change adaptation policy [J].
Archibald, Carla L. ;
Butt, Nathalie .
CLIMATIC CHANGE, 2018, 150 (3-4) :447-456
[7]   Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis [J].
Azucar, Danny ;
Marengo, Davide ;
Settanni, Michele .
PERSONALITY AND INDIVIDUAL DIFFERENCES, 2018, 124 :150-159
[8]   Schizophrenia Detection Using Machine Learning Approach from Social Media Content [J].
Bae, Yi Ji ;
Shim, Midan ;
Lee, Won Hee .
SENSORS, 2021, 21 (17)
[9]   The cultural environment: measuring culture with big data [J].
Bail, Christopher A. .
THEORY AND SOCIETY, 2014, 43 (3-4) :465-482
[10]   Multiscale mobility networks and the spatial spreading of infectious diseases [J].
Balcan, Duygu ;
Colizza, Vittoria ;
Goncalves, Bruno ;
Hu, Hao ;
Ramasco, Jose J. ;
Vespignani, Alessandro .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) :21484-21489