A Z-scheme ZnIn2S4/ZnS heterojunction catalyst: insight into enhanced photocatalytic performance and mechanism

被引:13
|
作者
Liu, Shuaishuai [1 ]
Mao, Yuchen [1 ]
Su, Zhiyuan [1 ]
Fang, Fan [1 ]
Li, Kun [1 ]
Wu, Yuhan [1 ]
Liu, Puyu [1 ]
Li, Peng [1 ]
Chang, Kun [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Ctr Hydrogenergy, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGHLY EFFICIENT; FOSSIL ENERGY; WATER; CONSTRUCTION;
D O I
10.1039/d3cy00298e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reasonable design of a highly efficient photocatalyst to improve its hydrogen production performance has attracted extensive attention. In this work, ZnIn2S4/ZnS (ZIS/ZnS) heterojunctions were constructed through a one-step solvothermal method, which ensures a good microscopic relationship between different phases and keeps their interfaces in close contact. The optimized ZIS/ZnS catalyst exhibited exceptionally enhanced photocatalytic activity under simulated AM 1.5G irradiation, and the maximum hydrogen evolution rate reached 464.1 mu mol h(-1), which was 16.2 and 7.3 times higher than that of pure ZnS and ZIS, respectively. Photo/electrochemical analyses proved that the ZIS/ZnS heterojunction has high charge separation efficiency and a strong redox ability. A Z-scheme electron transfer mechanism was proposed to explain the dramatic increase in photocatalytic activity which was based on photodeposition experiments. In addition, the catalyst also showed excellent hydrogen evolution activity under visible light irradiation (lambda > 420 nm). We explored the charge transfer mechanism in detail under different light conditions, employing in situ XPS and photo-deposition experiments.
引用
收藏
页码:3351 / 3357
页数:7
相关论文
共 50 条
  • [21] Direct Z-scheme ZnIn2S4 spheres and CeO2 nanorods decorated on reduced-graphene-oxide heterojunction photocatalysts for hydrogen evolution and photocatalytic degradation
    Raja, Annamalai
    Son, Namgyu
    Kang, Misook
    APPLIED SURFACE SCIENCE, 2023, 607
  • [22] Synergetic effect of carbon dots as co-catalyst for enhanced photocatalytic performance of methyl orange on ZnIn2S4 microspheres
    Shi, Weilong
    Lv, Huachang
    Yuan, Songliu
    Huang, Hui
    Liu, Yang
    Kang, Zhenhui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 174 : 282 - 289
  • [23] Enhancing the Photocatalytic Performance of Antibiotics Using a Z-Scheme Heterojunction of 0D ZnIn2S4 Quantum Dots and 3D Hierarchical Inverse Opal TiO2
    Zhu, Li-Bang
    Ding, Shou-Nian
    MOLECULES, 2023, 28 (20):
  • [24] Z-scheme 2D/2D heterojunction of ZnIn2S4/Ti-BPDC enhancing photocatalytic hydrogen evolution under visible light irradiation
    He, Xiaoyu
    Wu, Jiaming
    Li, Keyan
    Liu, Min
    Shi, Hainan
    Du, Jun
    Song, Chunshan
    Wang, Xiang
    Guo, Xinwen
    SCIENCE CHINA-MATERIALS, 2023, 66 (08) : 3155 - 3164
  • [25] Attapulgite-intercalated g-C3N4/ZnIn2S4 3D hierarchical Z-scheme heterojunction for boosting photocatalytic hydrogen production
    Wang, Bichen
    Huang, Liangliang
    Peng, Tao
    Wang, Rui
    Jin, Jun
    Wang, Huanwen
    He, Beibei
    Gong, Yansheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 675 : 52 - 63
  • [26] Fabrication of a Concave Cubic Z-Scheme ZnIn2S4/Cu2O Heterojunction with Superior Light-Driven CO2 Reduction Performance
    Bi, Zhe-xu
    Guo, Rui-tang
    Hu, Xing
    Wang, Juan
    Chen, Xin
    Pan, Wei-guo
    ENERGY & FUELS, 2023, 37 (08) : 6036 - 6048
  • [27] Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity
    Zou, Ping
    Su, Guangkui
    Li, Zhongguo
    Li, Yunzhong
    Zhou, Taoyun
    Kang, Yikun
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 633
  • [28] Performance and mechanism of photocatalytic degradation of tetracycline by Z-scheme heterojunction of CdS@LDHs
    Dai, Tiantian
    Yuan, Ziying
    Meng, Yue
    Xie, Bo
    Ni, Zheming
    Xia, Shengjie
    APPLIED CLAY SCIENCE, 2021, 212
  • [29] Interface regulation of ZnIn2S4/g-C3N4 S-scheme heterojunction for revealing exciton transfer mechanism and enhancing photocatalytic performance
    Liu, Xiaojie
    Kang, Shirong
    Yang, Guang
    Wang, Zixian
    Gao, Gaimei
    Dou, Mingyu
    Yang, Hua
    Li, Rui
    Li, Dacheng
    Dou, Jianmin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 410 - 424
  • [30] Ferroelectric polarization and interface engineering coupling of Z-scheme ZnIn2S4/α-In2Se3 heterostructure for efficient photocatalytic water splitting
    Li, Jiayi
    Lin, Yanming
    Zhang, Minjie
    Peng, Ying
    Wei, Xinru
    Wang, Zhengkun
    Jiang, Zhenyi
    Du, Aijun
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (10)